All of these examples for using agg work fine:
import pandas as pd
df = pd.DataFrame({"A":['A','A','B','B','B'],
"B":[1,2,1,1,2],
"C":[9,8,7,6,5]})
df.groupby('A')[['B','C']].agg({'B':'sum','C':'count'})
df.groupby('A')[['B','C']].agg({'B':['sum','count'],'C':'count'})
df.groupby('A')[['B']].agg('sum')
df.groupby('A')['B'].agg('sum')
This one throws a future warning as mentioned here:
df.groupby('A')['B'].agg({'B':['sum','count']})
This one works just fine:
df.groupby('A')[['B','C']].agg({'B':'sum'})
But this one throws an error (I'm aware this expression isn't necessary):
df.groupby('A')[['B']].agg({'B':'sum'})
SpecificationError: nested dictionary is ambiguous in aggregation
Why does it throw this error?
pd.show_versions()commit: None
python: 3.6.8.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 79 Stepping 1, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.24.1
pytest: 3.9.1
pip: 19.0.1
setuptools: 40.8.0
Cython: 0.29.5
numpy: 1.15.4
scipy: 1.2.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.4
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.9
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.9
feather: None
matplotlib: 3.0.2
openpyxl: 2.6.0
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml.etree: 4.3.1
bs4: 4.7.1
html5lib: 1.0.1
sqlalchemy: 1.2.18
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: 0.2.1
pandas_gbq: None
pandas_datareader: None
gcsfs: None
Not sure, probably a bug. If you're interested in debugging further, let us know.
I can confirm in pandas 0.25.0.
These work fine:
In [27]: df = pd.DataFrame({'x': [1,1,2], 'y': [3,4,4]})
In [28]: df
Out[28]:
x y
0 1 3
1 1 4
2 2 4
In [29]: df.groupby('x').agg({'x': 'sum'})
Out[29]:
x
x
1 2
2 2
In [30]: df.groupby('y').agg({'x': 'sum'})
Out[30]:
x
y
3 1
4 3
But this raises an error:
In [31]: df.groupby('y')[['x']].agg({'x': 'sum'})
...
SpecificationError: nested dictionary is ambiguous in aggregation
And the .agg() call only requires a single column, but you provide more than one column when you select columns from the groupby, then you get a weird result. (Why does the result below include a y column at all?)
In [34]: df.groupby('y')[['x', 'y']].agg({'x': 'sum'})
Out[34]:
x
x y
y
3 1 3
4 3 8
df.groupby('A')['B'].agg({'B':['sum','count']})
Here, the column 'B' is returned as a series so aggregation is not possible.
Most helpful comment
I can confirm in pandas 0.25.0.
These work fine:
But this raises an error:
And the
.agg()call only requires a single column, but you provide more than one column when you select columns from thegroupby, then you get a weird result. (Why does the result below include aycolumn at all?)