Orientdb: certain float numbers get rounded

Created on 23 Aug 2016  路  25Comments  路  Source: orientechnologies/orientdb

OrientDB Version, operating system, or hardware.

  • v.2.1.19 (build 2.1.x@r71509d3123205ed8c61f115a5caa5ece4b87a192; 2016-06-01 12:15:51)
  • v.2.1.21 (build 2.1.x@rd6619775543ef589bb487c9bd237fc703429d172; 2016-08-10 14:33:00)
  • v.2.2.6 (build 2.2.x@r4b1cc998b36ca2ae21a1679938912a8f545a994a; 2016-07-27 15:34:14)

    Operating System

  • [x] Linux

  • [ ] MacOSX
  • [ ] Windows
  • [ ] Other Unix
  • [ ] Other, name?

    Expected behavior and actual behavior

running query select 3.193359375

EXPECTED: 3.193359375
ACTUAL: returned rounded number: 3.1933594
Tested via REST API, Orient DB studio UI, and python binary client pyorient ver. 1.5.4 - same result on all of them.

BUT if run query select 3.193359374
i get correct float in return: 3.193359374

Here is the list of my numbers (value_in, value_out) than i stored and gotten rounded values:

[(1.529296875, 1.5292969), (-36.2109375, -36.210938), (1.08984375, 1.0898438), (-80.68359375, -80.68359), (70.13671875, 70.13672), (-13.53515625, -13.535156), (-36.03515625, -36.035156), (80.68359375, 80.68359), (-3.33984375, -3.3398438), (1.041015625, 1.0410156), (-4.74609375, -4.7460938), (1.02734375, 1.0273438), (-75.05859375, -75.05859), (-43.41796875, -43.41797), (1.724609375, 1.7246094), (1.072265625, 1.0722656), (87.71484375, 87.71484), (1.595703125, 1.5957031), (53.7890625, 53.789062), (3.791015625, 3.7910156), (1.51953125, 1.5195312), (67.32421875, 67.32422), (-24.2578125, -24.257812), (-45.3515625, -45.351562), (-83.14453125, -83.14453), (4.634765625, 4.6347656), (-36.73828125, -36.73828), (1.576171875, 1.5761719), (-81.9140625, -81.91406), (1.533203125, 1.5332031), (1.70703125, 1.7070312), (1.732421875, 1.7324219), (-24.08203125, -24.082031), (-51.50390625, -51.503906), (1.716796875, 1.7167969), (-49.39453125, -49.39453), (1.04296875, 1.0429688), (1.044921875, 1.0449219), (1.052734375, 1.0527344), (-43.2421875, -43.242188), (67.67578125, 67.67578), (1.00390625, 1.0039062), (-10.72265625, -10.722656), (76.81640625, 76.81641), (-47.28515625, -47.285156), (45.17578125, 45.17578), (1.150390625, 1.1503906), (1.05078125, 1.0507812), (-18.45703125, -18.457031), (-9.31640625, -9.316406), (-85.25390625, -85.25391), (1.599609375, 1.5996094), (-31.81640625, -31.816406), (-72.0703125, -72.07031), (-14.94140625, -14.941406), (-27.0703125, -27.070312), (-42.71484375, -42.714844), (81.73828125, 81.73828), (54.31640625, 54.316406), (4.669921875, 4.669922), (1.15234375, 1.1523438), (-43.9453125, -43.945312), (-68.5546875, -68.55469), (-5.80078125, -5.8007812), (1.14453125, 1.1445312), (1.583984375, 1.5839844), (-7.91015625, -7.9101562), (3.228515625, 3.2285156), (1.525390625, 1.5253906), (-81.03515625, -81.03516), (1.54296875, 1.5429688), (-81.2109375, -81.21094), (4.658203125, 4.658203), (-44.6484375, -44.648438), (1.443359375, 1.4433594), (1.58984375, 1.5898438), (82.08984375, 82.08984), (1.728515625, 1.7285156), (1.03515625, 1.0351562), (-88.76953125, -88.76953), (45.3515625, 45.351562), (4.365234375, 4.3652344), (1.544921875, 1.5449219), (76.46484375, 76.46484), (-6.50390625, -6.5039062), (1.060546875, 1.0605469), (-82.6171875, -82.61719), (-51.6796875, -51.679688), (-78.3984375, -78.39844), (-25.6640625, -25.664062), (-42.5390625, -42.539062), (89.47265625, 89.47266), (4.67578125, 4.6757812), (1.548828125, 1.5488281), (-52.20703125, -52.20703), (4.060546875, 4.060547), (1.033203125, 1.0332031), (59.4140625, 59.414062), (-69.43359375, -69.43359), (-48.69140625, -48.691406), (-8.96484375, -8.964844), (-5.09765625, -5.0976562), (1.73046875, 1.7304688), (89.82421875, 89.82422), (-55.72265625, -55.722656), (-53.0859375, -53.085938), (-10.01953125, -10.019531), (53.61328125, 53.61328), (-71.54296875, -71.54297), (1.001953125, 1.0019531), (53.96484375, 53.964844), (1.55859375, 1.5585938), (72.0703125, 72.07031), (1.056640625, 1.0566406), (-46.0546875, -46.054688), (-25.48828125, -25.488281), (-16.5234375, -16.523438), (1.521484375, 1.5214844), (-34.27734375, -34.277344), (77.16796875, 77.16797), (1.72265625, 1.7226562), (1.41015625, 1.4101562), (-82.44140625, -82.44141), (-16.69921875, -16.699219), (1.541015625, 1.5410156), (1.05859375, 1.0585938), (1.53515625, 1.5351562), (1.064453125, 1.0644531), (1.71484375, 1.7148438), (-46.58203125, -46.58203), (1.07421875, 1.0742188), (66.4453125, 66.44531), (-44.47265625, -44.472656), (-80.5078125, -80.50781), (61.34765625, 61.347656), (67.1484375, 67.14844), (1.52734375, 1.5273438), (3.240234375, 3.2402344), (1.572265625, 1.5722656), (1.048828125, 1.0488281), (-44.82421875, -44.82422), (-16.34765625, -16.347656), (76.11328125, 76.11328), (-34.1015625, -34.101562), (1.60546875, 1.6054688), (63.80859375, 63.808594), (1.517578125, 1.5175781), (1.537109375, 1.5371094), (-76.81640625, -76.81641), (-81.38671875, -81.38672), (-41.66015625, -41.660156), (3.404296875, 3.4042969), (1.591796875, 1.5917969), (-34.98046875, -34.98047), (-24.43359375, -24.433594), (-15.29296875, -15.292969), (-4.39453125, -4.3945312), (-63.80859375, -63.808594), (-12.48046875, -12.480469), (-89.47265625, -89.47266), (4.16015625, 4.1601562), (1.57421875, 1.5742188), (1.556640625, 1.5566406), (1.58203125, 1.5820312), (89.6484375, 89.64844), (-20.7421875, -20.742188), (-6.15234375, -6.1523438), (-39.90234375, -39.902344), (81.38671875, 81.38672), (87.36328125, 87.36328), (-29.1796875, -29.179688), (-66.62109375, -66.62109), (-82.08984375, -82.08984), (4.623046875, 4.623047), (-15.64453125, -15.644531), (3.24609375, 3.2460938), (1.087890625, 1.0878906), (1.69921875, 1.6992188), (-54.66796875, -54.66797), (-51.85546875, -51.85547), (1.705078125, 1.7050781), (3.205078125, 3.2050781), (-79.62890625, -79.62891), (-36.38671875, -36.38672), (54.4921875, 54.492188), (3.22265625, 3.2226562), (1.607421875, 1.6074219), (1.708984375, 1.7089844), (-35.33203125, -35.33203), (-43.06640625, -43.066406), (1.552734375, 1.5527344), (-35.5078125, -35.507812), (88.9453125, 88.94531), (1.029296875, 1.0292969), (-15.99609375, -15.996094), (3.216796875, 3.2167969), (1.720703125, 1.7207031), (1.083984375, 1.0839844), (53.0859375, 53.085938), (-8.61328125, -8.613281), (4.611328125, 4.611328), (-72.24609375, -72.24609), (-87.01171875, -87.01172), (-27.59765625, -27.597656), (1.603515625, 1.6035156), (1.34765625, 1.3476562), (-23.37890625, -23.378906), (-11.77734375, -11.777344), (82.79296875, 82.79297), (1.587890625, 1.5878906), (-83.84765625, -83.84766), (44.6484375, 44.648438), (1.068359375, 1.0683594), (1.373046875, 1.3730469), (-13.88671875, -13.886719), (4.62890625, 4.6289062), (1.513671875, 1.5136719), (1.580078125, 1.5800781), (1.06640625, 1.0664062), (-7.55859375, -7.5585938), (84.90234375, 84.90234), (-32.87109375, -32.871094), (56.6015625, 56.601562), (1.025390625, 1.0253906), (1.59765625, 1.5976562), (-10.37109375, -10.371094), (-45.17578125, -45.17578), (-50.2734375, -50.273438), (4.65234375, 4.6523438), (-17.05078125, -17.050781), (44.82421875, 44.82422), (-74.70703125, -74.70703), (1.55078125, 1.5507812), (4.646484375, 4.6464844), (-13.18359375, -13.183594), (1.701171875, 1.7011719), (-35.68359375, -35.683594), (1.021484375, 1.0214844), (-31.2890625, -31.289062), (-41.1328125, -41.132812), (4.306640625, 4.3066406), (69.43359375, 69.43359), (3.193359375, 3.1933594), (88.76953125, 88.76953), (1.037109375, 1.0371094), (-88.41796875, -88.41797), (-52.3828125, -52.382812), (-89.82421875, -89.82422), (1.712890625, 1.7128906), (-77.6953125, -77.69531), (1.01953125, 1.0195312)]
bug

Most helpful comment

Hey I just stumbled on this so sorry if I'm mistaken, but you might be making a very common mistake using Float.MIN_VALUE. It actually isn't the lowest negative number a Float can hold, it is the smallest positive value a Float can hold. To get the lowest negative number I think you just have to do (Float.MAX_VALUE * -1). I remember running into that before and I think that's the solution.

All 25 comments

Interestingly i see that all float numbers that get rounded end with 125, 375, 625, or 875 ... hope that helps.

I see that precision is pretty high for float numbers:
select 1.021484374999999 returns 1.021484374999999
select 1.021484375000001 returns 1.021484375000001

BUT the number in between 1.021484375 gets rounded:
select 1.021484375 returns 1.0214844

please add a hot fix for the next 2.2.x and 2.1.x release, this bug really messes up our data.

hi @dmitrytokarev,

Thanks for this detailed report, we are checking it.

Regards.

hi @dmitrytokarev,

Do you have a schema for the relative field that keep this numbers ?

if you run this query select ty.type() from ( select 3.193359374 as ty) you will see that the value is solved to DOUBLE, that can keep bigger number(with more units) than FLOAT.

for example this show exactly your problem:

create class TestFloat
create property TestFloat.test Float

insert into TestFloat set test = 3.193359374
select from TestFloat

this instead keep the data correctly:

create class TestDouble
create property TestDouble.test Double

insert into TestDouble set test = 3.193359374
select from TestDouble

If you have even bigger number consider to use DECIMAL

@tglman
select ty.type() from ( select 1.021484375 as ty) returns FLOAT
select ty.type() from ( select 1.021484374 as ty) returns DOUBLE

These values are stored as part of jsonData, schemaless.

Also if you look at all the numbers that get rounded they are all product of dividing a whole number by 512 (or 2^9):

>>> 1.021484375 * 512
523.0

>>> 3.193359375 * 512
1635.0

>>> -36.2109375 * 512
-18540.0

hi @dmitrytokarev,

This tourn out to be a quite tricky issue, we had a way to detect float based to converting is value to float and back to double, but this seems not beheave as expected from java, here is a simple example:

public class SimpleTest {

  @Test
  public void test() {
    double d = 1.021484375;
    float f = (float) d;
    //If you loose precision they should be different
    assertFalse(Double.compare(d, f) == 0);
  }

  @Test
  public void testString() {
    double d = 1.021484375;
    float f = (float) d;
    assertFalse(Double.toString(d).equals(Float.toString(f)));
  }

}

We are going to move the detection to a the string based approach, the fix should be done e ported in the next hours and it will be out with the next hotfixes.

Regards

@tglman thank you for taking care of this so quickly!

@tglman also might want to add milestones to this issue for easier search/filter.

@tglman It looks to me that the logic should be && to detect that the dou value is within acceptable Float limits:

if (dou <= Float.MAX_VALUE && dou >= Float.MIN_VALUE && Double.toString(dou).equals(Float.toString((float) dou))) {
// code
}

@tglman x <= Float.MAX_VALUE || x >= Float.MIN_VALUE is always true (for real numbers).

hi ,

@dmitrytokarev it's already everything in && or maybe i didn't get what you meant.

@kived that is just an optimization to avoid to check every number.

thanks for checking it anyway.

@tglman current code to test if the variable is float is:

(dou <= Float.MAX_VALUE || dou >= Float.MIN_VALUE) && Double.toString(dou).equals(Float.toString((float) dou))

I am saying that the part (dou <= Float.MAX_VALUE || dou >= Float.MIN_VALUE) will always result in true. So it brings no value and determination of whether the variable is float or not is solely left to the the second part of the statement: Double.toString(dou).equals(Float.toString((float) dou)).

So the fix for this is to use && instead of || when checking if the variable is within the float type limits:

dou <= Float.MAX_VALUE && dou >= Float.MIN_VALUE && Double.toString(dou).equals(Float.toString((float) dou))

@tglman But it _will_ check every number.

For simplicity, assume Float.MAX_VALUE = 10 and Float.MIN_VALUE = 0.01. 20 is outside of that range, correct?

dou <= Float.MAX_VALUE || dou >= Float.MIN_VALUE
20 <= 10 || 20 >= 0.01
false || true
true

There exists no real number, whether float or double, for which this expression will not evaluate true. Using && instead of || fixes this logic.

Hey I just stumbled on this so sorry if I'm mistaken, but you might be making a very common mistake using Float.MIN_VALUE. It actually isn't the lowest negative number a Float can hold, it is the smallest positive value a Float can hold. To get the lowest negative number I think you just have to do (Float.MAX_VALUE * -1). I remember running into that before and I think that's the solution.

@almibe that's true. I just presumed that dou var was stripped off it's sign. Need to look into the code...

Cool, I don't know the details of this issue so it might not matter. I just know I've made similar mistakes in the past thanks to Java's odd naming.

@almibe Nice catch! Given the purpose here (to ensure that the data is stored with the most appropriate type), the test should probably use the absolute value of dou.

Verified the fix on 2.1.23.

Hi All,

Yes I got your point now, dou <= Float.MAX_VALUE || dou >= Float.MIN_VALUE is wrong, going to change it to && i was not seeing it :)

thank you for you patience and for pushing my nose on it :)

luckely is just a not working optimization.

Regards

Closing the issue anyway, because original problem is solved.

Regards

As the original issue I do select 3.193359375 and get 3.1933594.
More strangely, select 53.546754 returns 53.546753 which is not even a rounding.
OrientDB Version: 3.0.17
Java Version: 1.8.0_191
OS: Windows 10 Version 1803

Same here with orientdb 3.0.30

I am uploading an embedded json and finding its internal values altered.
{"x": 3417000000.0} -> {"x": 3416999940}

@Solver42 It seems your results could be caused by converting to float and then rounding to 8 significant figures. https://www.h-schmidt.net/FloatConverter/IEEE754.html

But mine would have to be 9 sigfigs, so I am lost.

Was this page helpful?
0 / 5 - 0 ratings