Please answer the following questions for yourself before submitting an issue.
https://github.com/tensorflow/models/tree/master/research/object_detection
Evaluation is not performed automatically every 300sec during the training.
Im using the TF2 with GPU
python model_main_tf2.py --model_dir=path\to\model\dir --pipeline_config_path=path\to\pipeline.config
Run the COCO evaluation the same way it did when I used TFOD with TF1
Im using: tensorflow-gpu 2.3.0
The commit that Im using: a26d77c47b319c367c2a81098eee72d9373cdc91
My pipeline.config:
model {
ssd {
num_classes: 3
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
feature_extractor {
type: "ssd_mobilenet_v2_fpn_keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999998989515007e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
use_depthwise: true
override_base_feature_extractor_hyperparams: true
fpn {
min_level: 3
max_level: 7
additional_layer_depth: 128
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.9999998989515007e-05
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
depth: 128
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.599999904632568
share_prediction_tower: true
use_depthwise: true
}
}
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 9.99999993922529e-09
iou_threshold: 0.6000000238418579
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: false
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 15
data_augmentation_options {
random_horizontal_flip {
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.07999999821186066
total_steps: 50000
warmup_learning_rate: 0.026666000485420227
warmup_steps: 1000
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
fine_tune_checkpoint: "C:\ObjectDetection\FaceMaskDetection\Zoo\ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8\checkpoint\ckpt-0"
num_steps: 20000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
fine_tune_checkpoint_version: V2
}
train_input_reader {
label_map_path: "C:/ObjectDetection/FaceMaskDetection/Dataset/TFRecord/label_map.txt"
tf_record_input_reader {
input_path: "C:/ObjectDetection/FaceMaskDetection/Dataset/TFRecord/train.record"
}
}
eval_config {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "C:/ObjectDetection/FaceMaskDetection/Dataset/TFRecord/label_map.txt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "C:/ObjectDetection/FaceMaskDetection/Dataset/TFRecord/eval.record"
}
}
Can confirm. Having the same issue after switching from TF1 to TF2
Ok, I solved the problem.
If you look closely at model_main_tf2.py you will find out that you can either run the evaluation when you specify the
FLAGS.checkpoint_dir. When you don't specify it will run the training loop. You cant run both with the current implementation.
if FLAGS.checkpoint_dir:
model_lib_v2.eval_continuously(...) <----------------------------------- Evaluation
else:
if FLAGS.use_tpu:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(FLAGS.tpu_name)
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
elif FLAGS.num_workers > 1:
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
else:
strategy = tf.compat.v2.distribute.MirroredStrategy()
with strategy.scope():
model_lib_v2.train_loop(...) <-----------------------------------Training
The workaround that I found here is to run the evaluation in the parallel command prompt. By running python object_detection/model_main_tf2.py --checkpoint_dir <same path as model_dir> --model_dir <the model_dir you passed in the training process> --pipeline_config_path <path to the pipeline.config file you're training with>
Make sure to disable GPU for the evaluation script using the set CUDA_VISIBLE_DEVICES=-1 in the command prompt otherwise it fails on some GPU allocation. This way it works like a champ!! 馃憡
Ok, I solved the problem.
If you look closely at
model_main_tf2.pyyou will find out that you can either run the evaluation when you specify the
FLAGS.checkpoint_dir. When you don't specify it will run the training loop. You cant run both with the current implementation.if FLAGS.checkpoint_dir: model_lib_v2.eval_continuously(...) <----------------------------------- Evaluation else: if FLAGS.use_tpu: resolver = tf.distribute.cluster_resolver.TPUClusterResolver(FLAGS.tpu_name) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.experimental.TPUStrategy(resolver) elif FLAGS.num_workers > 1: strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() else: strategy = tf.compat.v2.distribute.MirroredStrategy() with strategy.scope(): model_lib_v2.train_loop(...) <-----------------------------------TrainingThe workaround that I found here is to run the evaluation in the parallel command prompt. By running
python object_detection/model_main_tf2.py --checkpoint_dir <same path as model_dir> --model_dir <the model_dir you passed in the training process> --pipeline_config_path <path to the pipeline.config file you're training with>Make sure to disable GPU for the evaluation script using the
set CUDA_VISIBLE_DEVICES=-1in the command prompt otherwise it fails on some GPU allocation. This way it works like a champ!! 馃憡
Hi, @horczech
I get 2 log dir files. /train and /eval
But with tensorboard, how can I see the eval_loss, I can see train loss with /train and eval mAP with /eval
Most helpful comment
Ok, I solved the problem.
If you look closely at
model_main_tf2.pyyou will find out that you can either run the evaluation when you specify theFLAGS.checkpoint_dir. When you don't specify it will run the training loop. You cant run both with the current implementation.The workaround that I found here is to run the evaluation in the parallel command prompt. By running
python object_detection/model_main_tf2.py --checkpoint_dir <same path as model_dir> --model_dir <the model_dir you passed in the training process> --pipeline_config_path <path to the pipeline.config file you're training with>Make sure to disable GPU for the evaluation script using the
set CUDA_VISIBLE_DEVICES=-1in the command prompt otherwise it fails on some GPU allocation. This way it works like a champ!! 馃憡