What is the top-level directory of the model you are using:
modelsresearchobject_detection
Have I written custom code (as opposed to using a stock example script provided in TensorFlow):
NO, trying to use model_main.py
OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
Windows 10
TensorFlow installed from (source or binary):
Binary
TensorFlow version (use command below):
v1.15.0-rc2-10-g38ea9bbfea 1.15.0-rc3
Bazel version (if compiling from source):
N/A
CUDA/cuDNN version:
CUDA Version 10.0.130
cuDNN: 7.6.4.38
GPU model and memory:
GeForce RTX 2080 SUPER. 8 GB dedicated, 32 GB shared
Exact command to reproduce:
From within an Anaconda environment:
python model_main.py --alsologtostderr --model_dir=training/trial_1/ --pipeline_config_path=training/trial_1/faster_rcnn_nas_coco.config
Hangs on a
W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
message. Sits there forever. _Sometimes_ (usually after restarting the terminal and clearing out any produced files like *.ckpt and *.pbtxt ) it gets passed this point and soon after crashes with an out of memory problem. Mentioning that because I don't know if its related or not.
(tensorflow) F:\Hujber\TensorFlow\workspace\wormLearn>python model_main.py --alsologtostderr --model_dir=training/trial_1/ --pipeline_config_path=training/trial_1/faster_rcnn_nas_coco.config
2019-10-09 23:43:04.866391: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
* https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\slim\nets\inception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\slim\nets\mobilenet\mobilenet.py:389: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
WARNING:tensorflow:From model_main.py:109: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\config_util.py:94: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
W1009 23:43:07.285009 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\utils\config_util.py:94: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:573: The name tf.logging.warning is deprecated. Please use tf.compat.v1.logging.warning instead.
W1009 23:43:07.285009 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:573: The name tf.logging.warning is deprecated. Please use tf.compat.v1.logging.warning instead.
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1.
W1009 23:43:07.285009 15132 model_lib.py:574] Forced number of epochs for all eval validations to be 1.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\config_util.py:480: The name tf.logging.info is deprecated. Please use tf.compat.v1.logging.info instead.
W1009 23:43:07.285009 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\utils\config_util.py:480: The name tf.logging.info is deprecated. Please use tf.compat.v1.logging.info instead.
INFO:tensorflow:Maybe overwriting train_steps: None
I1009 23:43:07.285009 15132 config_util.py:480] Maybe overwriting train_steps: None
INFO:tensorflow:Maybe overwriting sample_1_of_n_eval_examples: 1
I1009 23:43:07.285009 15132 config_util.py:480] Maybe overwriting sample_1_of_n_eval_examples: 1
INFO:tensorflow:Maybe overwriting eval_num_epochs: 1
I1009 23:43:07.300634 15132 config_util.py:480] Maybe overwriting eval_num_epochs: 1
INFO:tensorflow:Maybe overwriting load_pretrained: True
I1009 23:43:07.300634 15132 config_util.py:480] Maybe overwriting load_pretrained: True
INFO:tensorflow:Ignoring config override key: load_pretrained
I1009 23:43:07.300634 15132 config_util.py:490] Ignoring config override key: load_pretrained
WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered `eval_on_train_input_config.num_epochs` = 0. Overwriting `num_epochs` to 1.
W1009 23:43:07.316247 15132 model_lib.py:590] Expected number of evaluation epochs is 1, but instead encountered `eval_on_train_input_config.num_epochs` = 0. Overwriting `num_epochs` to 1.
INFO:tensorflow:create_estimator_and_inputs: use_tpu False, export_to_tpu False
I1009 23:43:07.316247 15132 model_lib.py:623] create_estimator_and_inputs: use_tpu False, export_to_tpu False
INFO:tensorflow:Using config: {'_model_dir': 'training/trial_1/', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x00000260DABBD288>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
I1009 23:43:07.331873 15132 estimator.py:212] Using config: {'_model_dir': 'training/trial_1/', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x00000260DABBD288>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:Estimator's model_fn (<function create_model_fn.<locals>.model_fn at 0x00000260DABB5708>) includes params argument, but params are not passed to Estimator.
W1009 23:43:07.331873 15132 model_fn.py:630] Estimator's model_fn (<function create_model_fn.<locals>.model_fn at 0x00000260DABB5708>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Not using Distribute Coordinator.
I1009 23:43:07.331873 15132 estimator_training.py:186] Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
I1009 23:43:07.331873 15132 training.py:612] Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
I1009 23:43:07.347513 15132 training.py:700] Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\training\training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
W1009 23:43:07.363146 15132 deprecation.py:323] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\training\training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\data_decoders\tf_example_decoder.py:167: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.
W1009 23:43:07.363146 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\data_decoders\tf_example_decoder.py:167: The name tf.FixedLenFeature is deprecated. Please use tf.io.FixedLenFeature instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\data_decoders\tf_example_decoder.py:182: The name tf.VarLenFeature is deprecated. Please use tf.io.VarLenFeature instead.
W1009 23:43:07.363146 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\data_decoders\tf_example_decoder.py:182: The name tf.VarLenFeature is deprecated. Please use tf.io.VarLenFeature instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:61: The name tf.gfile.Glob is deprecated. Please use tf.io.gfile.glob instead.
W1009 23:43:07.378762 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:61: The name tf.gfile.Glob is deprecated. Please use tf.io.gfile.glob instead.
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
W1009 23:43:07.378762 15132 dataset_builder.py:66] num_readers has been reduced to 1 to match input file shards.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:80: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.parallel_interleave(...)`.
W1009 23:43:07.394386 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:80: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.parallel_interleave(...)`.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\data\python\ops\interleave_ops.py:77: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.experimental_determinstic`.
W1009 23:43:07.394386 15132 deprecation.py:323] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\data\python\ops\interleave_ops.py:77: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.experimental_determinstic`.
2019-10-09 23:43:07.875217: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2019-10-09 23:43:08.008609: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce RTX 2080 SUPER major: 7 minor: 5 memoryClockRate(GHz): 1.815
pciBusID: 0000:41:00.0
2019-10-09 23:43:08.015807: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2019-10-09 23:43:08.028156: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2019-10-09 23:43:08.034195: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll
2019-10-09 23:43:08.040674: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll
2019-10-09 23:43:08.047902: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll
2019-10-09 23:43:08.057279: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll
2019-10-09 23:43:08.069618: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2019-10-09 23:43:08.072360: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\anchor_generators\grid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
W1009 23:43:13.023561 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\anchor_generators\grid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.is_nan is deprecated. Please use tf.math.is_nan instead.
W1009 23:43:16.071676 15132 module_wrapper.py:139] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.is_nan is deprecated. Please use tf.math.is_nan instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:465: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
W1009 23:43:16.149807 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:465: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:468: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
W1009 23:43:16.149807 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:468: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
W1009 23:43:17.891674 15132 module_wrapper.py:139] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.image.resize_images is deprecated. Please use tf.image.resize instead.
W1009 23:43:19.450865 15132 module_wrapper.py:139] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.image.resize_images is deprecated. Please use tf.image.resize instead.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead.
W1009 23:43:19.466491 15132 module_wrapper.py:139] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.image.resize_nearest_neighbor is deprecated. Please use tf.compat.v1.image.resize_nearest_neighbor instead.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.string_to_hash_bucket_fast is deprecated. Please use tf.strings.to_hash_bucket_fast instead.
W1009 23:43:21.049735 15132 module_wrapper.py:139] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\autograph\converters\directives.py:119: The name tf.string_to_hash_bucket_fast is deprecated. Please use tf.strings.to_hash_bucket_fast instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:148: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.batch(..., drop_remainder=True)`.
W1009 23:43:21.471656 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\builders\dataset_builder.py:148: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.batch(..., drop_remainder=True)`.
INFO:tensorflow:Calling model_fn.
I1009 23:43:21.487268 15132 estimator.py:1148] Calling model_fn.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:162: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
W1009 23:43:21.502909 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:162: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
2019-10-09 23:43:21.512084: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-10-09 23:43:21.529066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce RTX 2080 SUPER major: 7 minor: 5 memoryClockRate(GHz): 1.815
pciBusID: 0000:41:00.0
2019-10-09 23:43:21.540071: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2019-10-09 23:43:21.544621: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2019-10-09 23:43:21.547872: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll
2019-10-09 23:43:21.553238: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll
2019-10-09 23:43:21.557124: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll
2019-10-09 23:43:21.565002: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll
2019-10-09 23:43:21.568175: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2019-10-09 23:43:21.572306: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-10-09 23:43:22.169167: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-10-09 23:43:22.172834: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-10-09 23:43:22.176589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-10-09 23:43:22.182536: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 6269 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 SUPER, pci bus id: 0000:41:00.0, compute capability: 7.5)
INFO:tensorflow:A GPU is available on the machine, consider using NCHW data format for increased speed on GPU.
I1009 23:43:22.178170 15132 nasnet.py:408] A GPU is available on the machine, consider using NCHW data format for increased speed on GPU.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py:1057: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
W1009 23:43:22.178170 15132 deprecation.py:323] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py:1057: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\slim\nets\nasnet\nasnet_utils.py:459: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
W1009 23:43:22.287549 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\slim\nets\nasnet\nasnet_utils.py:459: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\core\anchor_generator.py:149: The name tf.assert_equal is deprecated. Please use tf.compat.v1.assert_equal instead.
W1009 23:43:29.248443 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\core\anchor_generator.py:149: The name tf.assert_equal is deprecated. Please use tf.compat.v1.assert_equal instead.
INFO:tensorflow:Scale of 0 disables regularizer.
I1009 23:43:29.248443 15132 regularizers.py:98] Scale of 0 disables regularizer.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:986: The name tf.get_variable_scope is deprecated. Please use tf.compat.v1.get_variable_scope instead.
W1009 23:43:29.248443 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:986: The name tf.get_variable_scope is deprecated. Please use tf.compat.v1.get_variable_scope instead.
INFO:tensorflow:Scale of 0 disables regularizer.
I1009 23:43:29.264083 15132 regularizers.py:98] Scale of 0 disables regularizer.
INFO:tensorflow:depth of additional conv before box predictor: 0
I1009 23:43:29.264083 15132 convolutional_box_predictor.py:148] depth of additional conv before box predictor: 0
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\box_coders\faster_rcnn_box_coder.py:82: The name tf.log is deprecated. Please use tf.math.log instead.
W1009 23:43:29.560967 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\box_coders\faster_rcnn_box_coder.py:82: The name tf.log is deprecated. Please use tf.math.log instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\core\minibatch_sampler.py:81: The name tf.random_shuffle is deprecated. Please use tf.random.shuffle instead.
W1009 23:43:29.592233 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\core\minibatch_sampler.py:81: The name tf.random_shuffle is deprecated. Please use tf.random.shuffle instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:1085: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
W1009 23:43:29.685991 15132 deprecation.py:506] From F:\Hujber\TensorFlow\models\research\object_detection\utils\ops.py:1085: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.
Instructions for updating:
box_ind is deprecated, use box_indices instead
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:185: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
W1009 23:43:29.701617 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:185: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py:1634: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.flatten instead.
W1009 23:43:32.791057 15132 deprecation.py:323] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py:1634: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.flatten instead.
INFO:tensorflow:Scale of 0 disables regularizer.
I1009 23:43:32.806683 15132 regularizers.py:98] Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
I1009 23:43:32.822310 15132 regularizers.py:98] Scale of 0 disables regularizer.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2235: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
W1009 23:43:32.837936 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2235: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2236: get_or_create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.get_or_create_global_step
W1009 23:43:32.837936 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2236: get_or_create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.get_or_create_global_step
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\utils\variables_helper.py:126: The name tf.train.NewCheckpointReader is deprecated. Please use tf.compat.v1.train.NewCheckpointReader instead.
W1009 23:43:32.853562 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\utils\variables_helper.py:126: The name tf.train.NewCheckpointReader is deprecated. Please use tf.compat.v1.train.NewCheckpointReader instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:317: The name tf.train.init_from_checkpoint is deprecated. Please use tf.compat.v1.train.init_from_checkpoint instead.
W1009 23:43:32.869188 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:317: The name tf.train.init_from_checkpoint is deprecated. Please use tf.compat.v1.train.init_from_checkpoint instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:174: The name tf.losses.huber_loss is deprecated. Please use tf.compat.v1.losses.huber_loss instead.
W1009 23:43:35.818088 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:174: The name tf.losses.huber_loss is deprecated. Please use tf.compat.v1.losses.huber_loss instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:180: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.
W1009 23:43:35.818088 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:180: The name tf.losses.Reduction is deprecated. Please use tf.compat.v1.losses.Reduction instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:345: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See `tf.nn.softmax_cross_entropy_with_logits_v2`.
W1009 23:43:35.849340 15132 deprecation.py:323] From F:\Hujber\TensorFlow\models\research\object_detection\core\losses.py:345: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See `tf.nn.softmax_cross_entropy_with_logits_v2`.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2202: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
W1009 23:43:35.989976 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\meta_architectures\faster_rcnn_meta_arch.py:2202: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\builders\optimizer_builder.py:52: The name tf.train.MomentumOptimizer is deprecated. Please use tf.compat.v1.train.MomentumOptimizer instead.
W1009 23:43:36.021228 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\builders\optimizer_builder.py:52: The name tf.train.MomentumOptimizer is deprecated. Please use tf.compat.v1.train.MomentumOptimizer instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:359: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead.
W1009 23:43:36.021228 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:359: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:369: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.
W1009 23:43:36.021228 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:369: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:472: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
W1009 23:43:48.484605 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:472: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:476: The name tf.add_to_collection is deprecated. Please use tf.compat.v1.add_to_collection instead.
W1009 23:43:49.816037 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:476: The name tf.add_to_collection is deprecated. Please use tf.compat.v1.add_to_collection instead.
WARNING:tensorflow:From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:477: The name tf.train.Scaffold is deprecated. Please use tf.compat.v1.train.Scaffold instead.
W1009 23:43:49.816037 15132 module_wrapper.py:139] From F:\Hujber\TensorFlow\models\research\object_detection\model_lib.py:477: The name tf.train.Scaffold is deprecated. Please use tf.compat.v1.train.Scaffold instead.
INFO:tensorflow:Done calling model_fn.
I1009 23:43:49.831650 15132 estimator.py:1150] Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
I1009 23:43:49.831650 15132 basic_session_run_hooks.py:541] Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
I1009 23:43:59.346498 15132 monitored_session.py:240] Graph was finalized.
2019-10-09 23:43:59.354769: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce RTX 2080 SUPER major: 7 minor: 5 memoryClockRate(GHz): 1.815
pciBusID: 0000:41:00.0
2019-10-09 23:43:59.368323: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2019-10-09 23:43:59.372370: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2019-10-09 23:43:59.376063: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll
2019-10-09 23:43:59.381228: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll
2019-10-09 23:43:59.384374: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll
2019-10-09 23:43:59.389889: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll
2019-10-09 23:43:59.393346: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2019-10-09 23:43:59.399778: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-10-09 23:43:59.404838: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-10-09 23:43:59.408820: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-10-09 23:43:59.413834: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-10-09 23:43:59.418801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6269 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 SUPER, pci bus id: 0000:41:00.0, compute capability: 7.5)
INFO:tensorflow:Restoring parameters from training/trial_1/model.ckpt-0
I1009 23:43:59.424629 15132 saver.py:1284] Restoring parameters from training/trial_1/model.ckpt-0
WARNING:tensorflow:From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\training\saver.py:1069: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file utilities to get mtimes.
W1009 23:44:04.970287 15132 deprecation.py:323] From C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow_core\python\training\saver.py:1069: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file utilities to get mtimes.
INFO:tensorflow:Running local_init_op.
I1009 23:44:07.828599 15132 session_manager.py:500] Running local_init_op.
INFO:tensorflow:Done running local_init_op.
I1009 23:44:09.031818 15132 session_manager.py:502] Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into training/trial_1/model.ckpt.
I1009 23:44:35.653282 15132 basic_session_run_hooks.py:606] Saving checkpoints for 0 into training/trial_1/model.ckpt.
2019-10-09 23:45:11.780278: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2019-10-09 23:45:14.790199: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2019-10-09 23:45:16.309576: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
With Windows 10, TF 1.15/CUDA 10.0/cuDNN 7.6.4.38
I also get this ptx warning followed eventually by a CUDA OOM error in a cross-validation loop (my own code, not model_main.py).
Did not occur with TF 1.12.0/CUDA 9.0/cuDNN 7.3.1.20
System information
What is the top-level directory of the model you are using:
modelsresearchobject_detection
Have I written custom code (as opposed to using a stock example script provided in TensorFlow):
NO, trying to use object_detection_tutorial.ipynb
OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
Windows 10
TensorFlow installed from (source or binary):
installed using pip(pip install tensorflow-gpu)
TensorFlow version (use command below):
v2.0.0
Bazel version (if compiling from source):
N/A
CUDA/cuDNN version:
CUDA Version 10.0.130
cuDNN: 7.6.4
GPU model and memory:
GeForce GTX 1050 4 GB dedicated, 3.9 GB shared
Exact command to reproduce:
runt the object_detection_tutorial.ipynb file
Describe the problem
and it got stuck at the loop where the image results were meant to be shown i.e.:-
for image_path in TEST_IMAGE_PATHS:
show_inference(detection_model, image_path)
.
It stayed here until the jupyter notebook dispalyed a message saying kernel has died.
When tried to run it in anaconda prompt ,the following was displayed at the end after which the no images were shown and the process ended.
W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
Please look into this matter.
I got the same error, keras doesn't use gpu
I also got the same error. After the error appears in the console, the kernal is dead and must be restarted. Please provide some information for this issue!
The following line is causing the issue:
output_dict = model(input_tensor)
Same problem here.
Its weird - I get this error and then model.predict
is super slow, but fitting the model is just as fast as normal.
Is this issue due to CUDA 10 ? i'm having this issue as well
I could resolve this problem by using tensorflow version 1.9. Works as expected now!
@Keyrainn Tensorflow 1.14 with CUDA 10.0 works for me
Same problem here on Windows 10 with Keras 2.3.1 and TensorFlow 2.0. Could this somehow be related to this issue?
I'm also having the same issue with TensorFlow 2.0 and Windows 10 while trying to run object_detection_tutorial.ipynb, specifically failing on output_dict = model(input_tensor)
. I'd prefer not to roll back to v1.9 if possible.
same problem any solution ? :) object_detection_tutorial.ipynb doesn´t run
I had the same ptx
hang up occasionally in addition to freezing at basic_session_run_hooks.py step = 0
.
I'm running with TF 1.15 and CUDA 10.
I managed to get things up running again by downgrading my NVIDIA drivers to 431.60.
I fixed it by downgrading tensorflow. Not the best solution but works
I had the same
ptx
hang up occasionally in addition to freezing atbasic_session_run_hooks.py step = 0
.
I'm running with TF 1.15 and CUDA 10.
I managed to get things up running again by downgrading my NVIDIA drivers to 431.60.
wich cuDNN did you use??
Please solve the issue quickly
I fixed it by downgrading tensorflow. Not the best solution but works
Downgrading till which tensorflow
I fixed it by downgrading tensorflow. Not the best solution but works
Downgrading till which tensorflow
TF 1.15
Installed TF 1.5 but getting error @akoutsoukis
In [7] model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
detection_model = load_model(model_name)
WARNING:tensorflow:From
Instructions for updating:
TypeError Traceback (most recent call last)
1 model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
----> 2 detection_model = load_model(model_name)
9 model_dir = pathlib.Path(model_dir)/"saved_model"
10
---> 11 model = tf.saved_model.load(str(model_dir))
12 model = model.signatures['serving_default']
13
c:usershemant ghugeanaconda3envstensorflow1bglibsite-packagestensorflow_corepythonutildeprecation.py in new_func(args, *kwargs)
322 'in a future version' if date is None else ('after %s' % date),
323 instructions)
--> 324 return func(args, *kwargs)
325 return tf_decorator.make_decorator(
326 func, new_func, 'deprecated',
TypeError: load() missing 2 required positional arguments: 'tags' and 'export_dir'
I fixed it by downgrading tensorflow. Not the best solution but works
Downgrading till which tensorflow
TF 1.15
Installed TF 1.5 but getting error @akoutsoukis
In [7] model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
detection_model = load_model(model_name)
WARNING:tensorflow:From :11: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0.
TypeError Traceback (most recent call last)
in
1 model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
----> 2 detection_model = load_model(model_name)
in load_model(model_name)
9 model_dir = pathlib.Path(model_dir)/"saved_model"
10
---> 11 model = tf.saved_model.load(str(model_dir))
12 model = model.signatures['serving_default']
13
c:usershemant ghugeanaconda3envstensorflow1bglibsite-packagestensorflow_corepythonutildeprecation.py in new_func(args, *kwargs)
322 'in a future version' if date is None else ('after %s' % date),
323 instructions)
--> 324 return func(args, *kwargs)
325 return tf_decorator.make_decorator(
326 func, new_func, 'deprecated',
TypeError: load() missing 2 required positional arguments: 'tags' and 'export_dir'
Getting this same issue. I would really hate to downgrade driver or Tensorflow, especially since, I just upgraded to Tensorflow2.0 and modified my code accordingly. Any solution?
Hey,just wanted to ask one thing.
Is this problem just happening for windows users or are linux or mac users too facing the same problem?
pls reply.
@Acejoy For me it was in Linux.
I'm having this same problem
With Windows 10, installed tensorflow-gpu with conda: TF 2.0.0/CUDA 10.0
Same issue here, hangs on
2020-01-31 18:29:05.919027: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
Then crashes with no error.
Same issue
Windows 10, TF 1.13.1/1.14/1.15.2
CUDA 10
Ok it’s clear that many have experienced the problem and for many, many months. Can we know where the solution resides? In a fixed NVidia driver? In tensorflow? Thanks
Hi team,
I just had the exact same problem on the following configuration :
And solve it by reinstalling (... copying to be more accurate) the correct cuDNN files version.
For any reasons I tried first to install the very latest CUDA (10.1), cuDNN (for CUDA 10.1), Tensorflow (2.1) versions and fall back to the versions mentionned at the beginning of the post because of many problems, but I forgot to also downgrade cuDNN.
Now everything works fine.
Hope this helps
Dan.
@dmoreyes Hi) so what is your current version of TF, CUDA, and cudNN. I have the same issue as you.
gtx1050ti, TF 2.0.0. Cuda 10.2, cudNN 10.2.
Hi,
Here are the versions I'm using for my Windows 10 Pro x64 OS
cuDNN: version for CUDA 10.0 (v7.6.5.32) : https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.0_20191031/cudnn-10.0-windows10-x64-v7.6.5.32.zip
TensorFlow: 2.0.0 : Installed using pip install tensorflow-gpu==2.0
NVidia driver version for GeForce RTX 2080 Ti : 432.00
Dan
Hi,
Here are the versions I'm using for my Windows 10 Pro x64 OS
- CUDA:10.0 : https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
- cuDNN: version for CUDA 10.0 (v7.6.5.32) : https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.0_20191031/cudnn-10.0-windows10-x64-v7.6.5.32.zip
- TensorFlow: 2.0.0 : Installed using pip install tensorflow-gpu==2.0
- NVidia driver version for GeForce RTX 2080 Ti : 432.00
Dan
Do you still get the error Invoking ptxas not supported on Windows?
Any recommendation or solution for the problem? I am experiencing the same issue. Here is my setup:
Windows 10
CUDA 10.1
TensorFlow 2.0.1
NVidia RTX 2080 Ti
Thanks!
I don't know if this is related, but the same time this error started appearing (I didn't get the freeze issue though), training on a Titan X (pascal) became about 10x slower for a simple two layer network. Tensorflow 1.13.1 worked fine, every TF version after that was slow.
I just updated drivers (to 442.19) and while the ptx error is still there, training has resumed normal speed! This is Windows 10, CUDA 10.0, TensorFlow 1.15.2, Titan X (pascal).
Windows 10
Tensorflow 2.1.0
Cuda 10.1
cuDNN for CUDA 10.1 (v. 7.6.5.32)
GeForce RTX 1060
[INFO] training network...
Epoch 1/75
2020-02-15 14:45:46.794388: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-02-15 14:45:47.071668: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-02-15 14:45:47.998708: W tensorflow/stream_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation. This message will be only logged once.
then crashed without any errors.
Updated driver to 442.19. The warning remains, but training start working.
Windows 10
Tensorflow 2.0
Cuda 10.0
Cudnn 7.6.5 for cuda 10.0
GeForce GTX 1050 ti
Driver, latest to this date 442.19
I'm still getting this error after having tried many configurations of tensorflow and cuda versions.
I'm starting to think it might be an error in the data pipeline as explained here https://stackoverflow.com/questions/58455765/keras-sees-my-gpu-but-doesnt-use-it-when-training-a-neural-network but I'm not really sure of how to use the tf.records to solve this, here's my code https://github.com/JuanDRC/AlzheimerProj/blob/master/FreezeNone.py
Epoch 1/100
2020-02-17 11:15:18.577785: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2020-02-17 11:15:19.784597: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-02-17 11:15:21.886392: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
2020-02-17 11:15:22.281623: W tensorflow/core/common_runtime/bfc_allocator.cc:239] Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.53GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
According to https://www.tensorflow.org/install/source#tested_source_configurations
cuDNN for CUDA 10.0 should be 7.4.
Windows 10
Tensorflow 2.1.0
Cuda 10.1
cuDNN 7.6.5 for Cuda 10.1
GeForce RTX 2070
Driver 442.19
Any idea on how to fix this please ?
I've also tried Tensorflow 2.0, Cuda 10, cuDNN 7.4 for Cuda 10
And Tensorflow 2.1.0, Cuda 10.2, cuDNN 7.6.5 for Cuda 10.2
2020-02-23 23:32:55.488931: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
Loading the Tensorflow model into memory
2020-02-23 23:33:02.694777: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-02-23 23:33:02.706990: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.725GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2020-02-23 23:33:02.709086: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-02-23 23:33:02.713757: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-02-23 23:33:02.717086: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-02-23 23:33:02.718813: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-02-23 23:33:02.722356: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-02-23 23:33:02.724771: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-02-23 23:33:02.736184: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-02-23 23:33:02.737495: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-02-23 23:33:02.738601: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2020-02-23 23:33:02.741882: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.725GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2020-02-23 23:33:02.743964: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-02-23 23:33:02.745035: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-02-23 23:33:02.746099: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-02-23 23:33:02.747154: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-02-23 23:33:02.748218: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-02-23 23:33:02.749306: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-02-23 23:33:02.750383: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-02-23 23:33:02.751586: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-02-23 23:33:03.104342: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-23 23:33:03.105515: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0
2020-02-23 23:33:03.106198: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N
2020-02-23 23:33:03.107188: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6304 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)
Loading label map
Starting capture
2020-02-23 23:33:15.129453: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-02-23 23:33:15.913596: W tensorflow/stream_executor/gpu/redzone_allocator.cc:312] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation. This message will be only logged once.
2020-02-23 23:33:15.929984: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
I am having the same error but the program runs,
Keras 2.3.1
TF 1.15 (GPU version from pip install)
CUDA 10.0
I was trying to use the resnet prebuilt model
The output comes as expected from variable j
I would like to know if the GPU is utilized by keras as some people above mention that the GPU is not utilized with such error
j = resnet_model.predict(image_batch)
WARNING:tensorflow:From C:\Users\joehr\Anaconda3\envs\ml-agents\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
2020-04-06 17:02:12.132870: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-04-06 17:02:13.473220: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
2020-04-06 17:02:13.517059: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
The beginning pile of logs looks fine
Using TensorFlow backend.
2020-04-06 16:55:19.036335: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
PIL image size (480, 640)
numpy array size (640, 480, 3)
image batch size (1, 640, 480, 3)
WARNING:tensorflow:From C:\Users\joehr\Anaconda3\envs\ml-agents\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
2020-04-06 16:55:21.590580: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-04-06 16:55:21.622826: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.545
pciBusID: 0000:01:00.0
2020-04-06 16:55:21.623141: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2020-04-06 16:55:21.628250: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2020-04-06 16:55:21.631091: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll
2020-04-06 16:55:21.632380: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll
2020-04-06 16:55:21.636182: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll
2020-04-06 16:55:21.639007: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll
2020-04-06 16:55:21.655641: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-04-06 16:55:21.656514: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-04-06 16:55:21.656961: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-04-06 16:55:21.658475: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.545
pciBusID: 0000:01:00.0
2020-04-06 16:55:21.658762: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2020-04-06 16:55:21.658948: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2020-04-06 16:55:21.659137: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll
2020-04-06 16:55:21.659369: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll
2020-04-06 16:55:21.659558: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll
2020-04-06 16:55:21.659751: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll
2020-04-06 16:55:21.659944: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-04-06 16:55:21.660801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-04-06 16:55:22.319308: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-04-06 16:55:22.319530: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-04-06 16:55:22.319678: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-04-06 16:55:22.321037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 8685 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5)
WARNING:tensorflow:From C:\Users\joehr\Anaconda3\envs\ml-agents\lib\site-packages\keras\backend\tensorflow_backend.py:4070: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.
Same problem here with exactly the same configuaration as @aminemayouf
@greenbarrow
Using TF 1.14 with Keras 2.3.1 and Python 3.6.7 works for me now
Same issue
Windows 10, TF 1.13.1/1.14/1.15.2
CUDA 10
Thanks for your reply.
However, downgrading TF version is not an option for me in this context...
@greenbarrow
Using TF 1.14 with Keras 2.3.1 and Python 3.6.7 works for me nowSame issue
Windows 10, TF 1.13.1/1.14/1.15.2
CUDA 10
Thanks for your reply.
However, downgrading TF version is not an option for me in this context...@greenbarrow
Using TF 1.14 with Keras 2.3.1 and Python 3.6.7 works for me now
Same issue
Windows 10, TF 1.13.1/1.14/1.15.2
CUDA 10
Yea, I still have issues again. My project required me to upgrade to Tensorflow 2.0. When I did that, the error came up again.
Config: TF2.0, Cuda 10.1, Cudnn 7.6.4.38
I have the same issue
Config: TF2.0, Cuda 10.1, Cudnn 7.6.4.38
Guys if you want a simple object detection process that can be easily installed and run on video feed :
Hope it helps 😃
Same problem with TF1.15. Could anyone fix the problem?
Downgrading TF to 1.14 solve the problem.
I have similar problem. I was using tensorflow 2.1 with CUDA 10.1 and cuDNN 7.6 and it was working fine besides few cases when it was working painfully slow. I was getting the "relying on driver to perform ptx compilation" message and gpu usage was sitting on 0% but gpu memory was full.
I tried downgrading to tensorflow 2.0 and CUDA 10.0 as this config seems to work as @dmoreyes suggested. Still getting the same message and performance is still awful in same places as before.
I'm going to double-check if I have correct versions of everything, if it doesn't help I don't know what's left
So I checked the GPU usage in Windows, apparently, the Cuda section runs at 97% during runtime for me. Im showing the section for clarity (sorry in advance for bad markup)
I am also experiencing this same error under Windows 10 and TF 2.
2020-05-06 10:33:05.368044: W tensorflow/core/common_runtime/shape_refiner.cc:89] Function instantiation has undefined input shape at index: 1211 in the outer inference context.
2020-05-06 10:33:06.357323: W tensorflow/core/common_runtime/shape_refiner.cc:89] Function instantiation has undefined input shape at index: 1211 in the outer inference context.
2020-05-06 10:33:08.729475: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll
2020-05-06 10:33:16.719080: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-05-06 10:33:18.201877: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows
Relying on driver to perform ptx compilation. This message will be only logged once.
19043/Unknown - 1045s 55ms/step - loss: 0.3200 - accuracy: 0.8637
Also experiencing this issue. Windows 10, TF 2.2.0
GPU memory gets used, but looks like all calculation is running on CPU with seldom spikes on GPU Core.
Windows 10
Tensorflow 2.2.0
Cuda 10.2
cuDNN10.2
GeForce RTX 1050
2020-05-24 00:13:11.327144: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation.
Modify $PATH to customize ptxas location.
This message will be only logged once.
2020-05-24 00:13:34.932036: F tensorflow/stream_executor/cuda/cuda_dnn.cc:534] Check failed: cudnnSetTensorNdDescriptor(handle_.get(), elem_type, nd, dims.data(), strides.data()) == CUDNN_STATUS_SUCCESS (3 vs. 0)batch_descriptor: {count: 1 feature_map_count: 288 spatial: 0 7 value_min: 0.000000 value_max: 0.000000 layout: BatchYXDepth}
请求帮助。
Same problem here. Ubuntu 20.04, TF 2.2.0, CUDA 10.1, cuDNN 7.6.5, GPU 1080
Same problem here with WIndows 10, TF 1.15 , CUDA 10.0.0 ,cudnn 7.6.5 , nvidia driver version : 416.16 , GPU 1070.
I'm having this exact same problem. I'm using TensorFlow-GPU 2.20, Windows 10, CUDA 10.1, cudnn 7.6. I read somewhere that this could be fixed by putting a symbolic link to wherever ptxas really is, but I checked with where ptxas
, and it's the exact same folder as CUDA, so I am not sure what to do
Have this same problem on Windows 10, cudnn 7.6.5, cuda 10.1, tf-gpu 2.1.
Tensorflow seems to still run and I only get the warning once but the message still does appear on the first run of my script every time. Downgrading is unfortunately not an option so it would be nice if this error were fixed.
Have the same issue.
The warning hangs for quite a few seconds then the program executes. It's using the GPU 'normally'. Not sure about performance since I never used Tensorflow before.
Windows 10 Version 10.0.19041 Build 19041
GTX 1060 on driver 451.48
cudnn-10.1-windows10-x64-v7.6.4.38
CUDA 10.1
Tensorflow-gpu 2.2.0
Not sure if relevant but I'm using a legacy code so I'm importing tensorflow like this:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
Having the same problem.
python 3.8.3
TF 2.2.0
Windows10
Quadro T2000
I get this warning message but the training still continues.
2020-07-06 17:56:01.153426: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation.
Modify $PATH to customize ptxas location.
This message will be only logged once.
Python 3.8.3
TF 2.2.0
Windows 10
GeForce RTX 2070 Super
I have the same warning message and training continues.
Windows 10
Python 3.7.7
tensorflow 2.2.0
cudatoolkit 10.1
cudnn 7.6.5
nvidia driver 451.48
RTX 2080 Super max-Q
Windows 10 Enterprise x64
RAM 64.0GB
CPU Intel(R) Xeon(R) E-2176G CPU @ 3.7GHz 3.70GHz
GPU NVIDA GeForce RTX 2080 Ti
CUDA 10.1
CuDNN 7.6.5.32
Tensorflow-gpu 1.15
Python 3.6.10
I got this message, and then it halted.
W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation. This message will be only logged once.
I solved this problem by adding the codes below.
from tensorflow import ConfigProto
from tensorflow import InteractiveSession
InteractiveSession(config = ConfigProto()
and it worked. The message still popped up, though. Hope it will be helpful.
Same issue.
Windows 10
Python 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:03:10) [MSC v.1916 64 bit (AMD64)] on win32
Tensorflow 2.2.0
CUDA 10.1
cudnn-10.1-windows10-x64-v7.6.5.32
GPU NVIDIA GeForce GTX 1060 6GB
any other solutions?
Same issue.
Windows 10
Tensorflow 2.3.0
windows 10 , tensorflow-gpu 2.2.0, occur:
2020-08-06 19:19:41.847317: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1650 computeCapability: 7.5
coreClock: 1.71GHz coreCount: 14 deviceMemorySize: 4.00GiB deviceMemoryBandwidth: 119.24GiB/s
2020-08-06 19:19:41.851554: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-08-06 19:19:41.853742: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-08-06 19:19:41.855913: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-08-06 19:19:41.858445: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-08-06 19:19:41.862867: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-08-06 19:19:41.864985: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-08-06 19:19:41.867453: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-08-06 19:19:41.869781: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-08-06 19:19:42.491446: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-08-06 19:19:42.494204: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0
2020-08-06 19:19:42.495520: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N
2020-08-06 19:19:42.497226: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2917 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1650, pci bus id: 0000:01:00.0, compute capability: 7.5)
2020-08-06 19:19:42.503450: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1e7eb3aeb90 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-08-06 19:19:42.505993: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1650, Compute Capability 7.5
0it [00:00, ?it/s]2020-08-06 19:19:49.189187: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-08-06 19:19:49.508514: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-08-06 19:19:50.890988: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
but no gpu used actually, everything seems run on CPU.
Having same issues with Tensor Flow Version: 2.3.0; Keras Version: 2.4.0; Cuda 10, Cudnn 10; It identifies my gpu, when running a model it seems to be using gpu memory but my CUDAS get like 3%, doesn't seems to be a cpu bottleneck since it also reaches only a maximum of 15% when training the model
I faced the same issue. I used to train a model with Tensorflow 2.2.0 and 2.3.0 by using GPU. It worked fine a few days ago. But I just realized the inference speed is dramatically lower than ever. What's wrong with it? I would be grateful if anyone can help me out soon.
I am also getting the same warning, using Tensorflow 2.2 / 2.3 and Windows.
me too. We need to get this fixed. I'm not reformatting my laptop to use native GPU. GPU is working for other TF2. Just not when using ImageGenerator. It runs in CPU mode when training which is yuck since I have a 2080 Super card..
Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
same issue.
Tensorflow 2.2
Windows 10
Cuda 10.1
cudnn 8.0.2.39
Same problem.
Win 10
TensorFlow GPU 2.3.0
Cuda 10.0 (it's the same with 10.1)
Cudnn 7.6.5.32
NVIDIA GeForce GTX 1050
Memory of GPU is almost all used, but GPU is 0% in use :-(
Same problem.
Windows 10
TensorFlow GPU 2.3.0
Cuda 11.0
Cudnn 8.0.3.33
NVIDIA GeForce GTX 1070
Memory is almost 100% full, GPU is 0%. Model goes on to train using CPU.
Is there any actual solution to this problem? I am having the same problem:
W: tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation.
Modify $PATH to customize ptxas location.
This message will be only logged once.
To give the solution to this issue the benefit of the doubt, I think the source of this problem is that TF ignores cuda bin
directory defined in environment variable path wherein the ptxas file is based. And because of that, ptxas
cannot be loaded into the program. However, there is a workaround by defining a symbolic link for the working directory representing the cuda bin
directory.
The mentioned solution was for Unix based machines, but I am using Windows and have defined C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
in my environment variables path section and I think it works fine. Anyway, I still have the problem and don't know how to fix it.
Same problem.
The problem is only in inference of the NN, during Training it use correctly the GPU.
But this is A BIG PROBLEM, because inference go only using CPU.
Please FIX THIS thanks a lot.
Same Issue here.. Cant train any CNN without this appearing. Can we at least get a reason why this is happening?
Same problem
Seems that the warning "Invoking ptxas not supported on Windows" do not preclude the use of the GPU.
Actually so all working on my end with Windows 10, VS 2019, Tensorflow 2.3.0 cuda 11 cudnn 8
GPU is correctly used for training and in inference.
I've checked and I can actually train a model using the GPU, after this message is thrown. Doesn't seem to be a problem.
All dll's are found, correctly loaded and CUDA is shown at 90% in the task manager, when training.
Windows 10, Python 3.6, CUDA 10.1, Tensorflow 2.3.0
Don't know about the inference, though.
for me i solve this problem
pip install keras-gpu
then tf-nightly
pip install tf-nightly
using CUDA 11.0 instead of 10.1
with CuDNN 8.0 for CUDA 11.0
Windows 10
Tensorflow 2.3.1
Keras 2.4.3
Conda 4.9.0
I have the same problem, when is it going to be fixed?
Seems that the warning "Invoking ptxas not supported on Windows" do not preclude the use of the GPU.
Actually so all working on my end with Windows 10, VS 2019, Tensorflow 2.3.0 cuda 11 cudnn 8
GPU is correctly used for training and in inference.
I believe that this is true. The message is a warning and not an error.
For testing, I disabled the GPU for my deep learning project using the code
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
and then ran training.
It took a significantly large amount of time than without explicitly disabling the GPU.
Can someone confirm this?
I had tf.config.optimizer.set_jit(True)
in my code which worked on Linux but caused an error on Windows (the same error as described here). I found removing it resolved the issue (on Tensorflow v2.3).
Hi! I'm also having the same trouble on 2 different Windows 10 machines.
OS: Windows 10 19042.630
Python:3.6
Tensorflow: 2.3.0
CUDA:10.1
CuDNN:7.6
During compilation time of the tensorflow model I get:
2020-12-04 10:42:11.262923: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0
2020-12-04 10:42:11.770550: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-12-04 10:42:11.770733: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0
2020-12-04 10:42:11.771638: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N
2020-12-04 10:42:11.772184: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6696 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
2020-12-04 10:42:11.775255: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x1cd151dd0d0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-12-04 10:42:11.775344: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1070 Ti, Compute Capability 6.1
2020-12-04 10:42:16.934070: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll
2020-12-04 10:42:17.156466: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll
2020-12-04 10:42:17.749487: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only
Relying on driver to perform ptx compilation.
Modify $PATH to customize ptxas location.
This message will be only logged once.
So its detecting the GPU, loading the usual cuda dlls but then throwing the warning. In my case, the model still runs but on the CPU. In windows task manager GPU stays at 0.2% usage and no CUDA pane appears on the menu where we can see the GPU tasks (copy, 3D, etc...). This is actually what called my attention...
Doing echo %PATH%
on the cmd shows that the CUDA directory where ptxas.exe resides is well defined.
Help? Any progress on this issue?
@hassannagy you mentioned that you are using Cuda 11 and CuDNN 8? But on the Tensorflow tested configurations, Tensorflow tested configurations, that setup is not present. Does it works fine?
When is this problem going to be fixed?
Most helpful comment
Ok it’s clear that many have experienced the problem and for many, many months. Can we know where the solution resides? In a fixed NVidia driver? In tensorflow? Thanks