I ran with the latest version of tensorflow and keras. I didn't experience an import problem with theano as the backend. And when I put tensorflow as the backend, I saw the following message:
`
In [1]: import keras
AttributeError Traceback (most recent call last)
----> 1 import keras
//anaconda/lib/python2.7/site-packages/keras/__init__.py in
1 from __future__ import absolute_import
2
----> 3 from . import activations
4 from . import applications
5 from . import backend
//anaconda/lib/python2.7/site-packages/keras/activations.py in
4 from . import backend as K
5 from .utils.generic_utils import deserialize_keras_object
----> 6 from .engine import Layer
7
8
//anaconda/lib/python2.7/site-packages/keras/engine/__init__.py in
6 from .topology import Layer
7 from .topology import get_source_inputs
----> 8 from .training import Model
//anaconda/lib/python2.7/site-packages/keras/engine/training.py in
22 from .. import metrics as metrics_module
23 from ..utils.generic_utils import Progbar
---> 24 from .. import callbacks as cbks
25 from ..legacy import interfaces
26
//anaconda/lib/python2.7/site-packages/keras/callbacks.py in
24 if K.backend() == 'tensorflow':
25 import tensorflow as tf
---> 26 from tensorflow.contrib.tensorboard.plugins import projector
27
28
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/__init__.py in
28 from tensorflow.contrib import deprecated
29 from tensorflow.contrib import distributions
---> 30 from tensorflow.contrib import factorization
31 from tensorflow.contrib import framework
32 from tensorflow.contrib import graph_editor
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/factorization/__init__.py in
22 from tensorflow.contrib.factorization.python.ops.clustering_ops import *
23 from tensorflow.contrib.factorization.python.ops.factorization_ops import *
---> 24 from tensorflow.contrib.factorization.python.ops.gmm import *
25 from tensorflow.contrib.factorization.python.ops.gmm_ops import *
26 # pylint: enable=wildcard-import
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/factorization/python/ops/gmm.py in
25 from tensorflow.contrib.framework.python.framework import checkpoint_utils
26 from tensorflow.contrib.framework.python.ops import variables
---> 27 from tensorflow.contrib.learn.python.learn.estimators import estimator
28 from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib
29 from tensorflow.python.framework import constant_op
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/__init__.py in
85
86 # pylint: disable=wildcard-import
---> 87 from tensorflow.contrib.learn.python.learn import *
88 # pylint: enable=wildcard-import
89
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/__init__.py in
21
22 # pylint: disable=wildcard-import
---> 23 from tensorflow.contrib.learn.python.learn import *
24 # pylint: enable=wildcard-import
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/__init__.py in
23 from tensorflow.contrib.learn.python.learn import basic_session_run_hooks
24 from tensorflow.contrib.learn.python.learn import datasets
---> 25 from tensorflow.contrib.learn.python.learn import estimators
26 from tensorflow.contrib.learn.python.learn import graph_actions
27 from tensorflow.contrib.learn.python.learn import learn_io as io
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/__init__.py in
295 from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError
296 from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType
--> 297 from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier
298 from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator
299 from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn.py in
27 from tensorflow.contrib.layers.python.layers import optimizers
28 from tensorflow.contrib.learn.python.learn import metric_spec
---> 29 from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined
30 from tensorflow.contrib.learn.python.learn.estimators import estimator
31 from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py in
29 from tensorflow.contrib.layers.python.layers import optimizers
30 from tensorflow.contrib.learn.python.learn import metric_spec
---> 31 from tensorflow.contrib.learn.python.learn.estimators import estimator
32 from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
33 from tensorflow.contrib.learn.python.learn.estimators import model_fn
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py in
47 from tensorflow.contrib.learn.python.learn.estimators import tensor_signature
48 from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError
---> 49 from tensorflow.contrib.learn.python.learn.learn_io import data_feeder
50 from tensorflow.contrib.learn.python.learn.utils import export
51 from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_io/__init__.py in
19 from __future__ import print_function
20
---> 21 from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data
22 from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels
23 from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK
//anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_io/dask_io.py in
24 try:
25 # pylint: disable=g-import-not-at-top
---> 26 import dask.dataframe as dd
27 allowed_classes = (dd.Series, dd.DataFrame)
28 HAS_DASK = True
//anaconda/lib/python2.7/site-packages/dask/dataframe/__init__.py in
1 from __future__ import print_function, division, absolute_import
2
----> 3 from .core import (DataFrame, Series, Index, _Frame, map_partitions,
4 repartition)
5 from .io import (from_array, from_bcolz, from_array, from_bcolz,
//anaconda/lib/python2.7/site-packages/dask/dataframe/core.py in
36 return_scalar = '__return_scalar__'
37
---> 38 pd.computation.expressions.set_use_numexpr(False)
39
40
AttributeError: 'module' object has no attribute 'computation'
`
However, I did not experience any error when simply import tensorflow directly:
import tensorflow
Which version of tensorflow do you have e.g. the output of import tensorflow; print tensorflow.__version__
Mine is 1.1.0
Can you run from tensorflow.contrib.tensorboard.plugins import projector manually as well? I guess this should be reported to tensorflow and/or dask.
Can you try updating dask and pandas packages?
My pandas package is updated.
For dask package, before updating it, running from tensorflow.contrib.tensorboard.plugins import projector gives the same error message. But after updating dask, the error message dissappeared, by running this import and import keras (with Tensorflow backend)
It looks like it is resolved.
Ran through same issue and applied same fix (update dask). Most likely this was caused by updating pandas to recent version (saw it after updating pandas to 0.20.1).
Just update dask to 0.15.0, the problem will disappear
Great to hear that!
Thanks so much once I updated dask and pandas, works now
Hi, I have a similar issue.
I'm working with ubuntu 16.04, keras 2.1.2, tensorflow 1.3.0 and pandas 0.21.0, dask 0.16.0.
If I try to import anything from keras, after I imported pandas i get the following error:
ImportError: /folder_name/../lib/libstdc++.so.6: version `GLIBCXX_3.4.20' not found (required by /folder_name/anaconda3/lib/python3.6/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so)
If I import the things I need from keras before importing pandas everything works fine.
Any idea how to fix this or why it happens?
I read that downgrading pandas should work, but that would cause me some compatibility issues.
Thanks
Hi I had similar issue and was able to fix by reinstalling TensorFlow using
sudo conda install tensorflow
This allows and gave permission to downgrade to the compatible
numba: 0.35.0-np113py36_6 --> 0.35.0-np112py36_0
numpy: 1.13.3-py36h2cdce51_0 --> 1.12.1-py36h8871d66_1
i have been having a similar error for a while now the error is ModuleNotFoundError: no module named tensorflow.contrib:tensorflow is not a package
could someone please help me out with this
Big problem that wasted a week of mine
small solution
if keras is giving import problem and you are facing "no module named keras" even if you have installed it.
re install upgraded keras and tensorflow by:
Hope it will solve the problem. If not, try upgrading your conda (Anaconda) and then do steps 1 to 3 above again
pip install Keras==2.2.4 solved my same problem.
i have keras version== 2.2.4 , tensorflow version == 2.0.0b1, numpy version version == 1.16.1 and i m still getting error
MY CODE
from imageai.Detection import ObjectDetection
import os
execution_path = os.getcwd()
detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "traffic.jpeg"), output_image_path=os.path.join(execution_path , "traffic.jpeg"))
for eachObject in detections:
print(eachObject["name"] , " : " , eachObject["percentage_probability"] )
Using TensorFlow backend.
Traceback (most recent call last):
File "C:/Users/Atul Raj/PycharmProjects/Projects/expression.py", line 6, in
detector = ObjectDetection()
File "C:\python37\lib\site-packages\imageai\Detection__init__.py", line 88, in __init__
self.sess = K.get_session()
File "C:\python37\lib\site-packages\keras\backend\tensorflow_backend.py", line 174, in get_session
default_session = tf.get_default_session()
AttributeError: module 'tensorflow' has no attribute 'get_default_session'
PLEASE HELP ME SOLVING THIS ERROR
Same error not solve in my system using instructions given above in various replies.
ModuleNotFoundError: No module named 'keras.backend.tensorflow_backend'
How to resolve it.
??
Same error not solve in my system using instructions given above in various replies.
ModuleNotFoundError: No module named 'keras.backend.tensorflow_backend'
How to resolve it.
??
I think you should install keras
command- pip install keras
Most helpful comment
Just update dask to 0.15.0, the problem will disappear