Hey, this is the MXNet Label Bot.
Thank you for submitting the issue! I will try and suggest some labels so that the appropriate MXNet community members can help resolve it.
Here are my recommended labels: ONNX, Feature
@mxnet-label-bot add[Feature request, ONNX]
tracked on the ONNX repo here - https://github.com/onnx/onnx/issues/2086
onnx 1.5 supports ssd now
https://github.com/onnx/onnx/issues/1552
I'm getting a "AttributeError: No conversion function registered for op type _contrib_MultiBoxPrior yet.". Same situations as https://stackoverflow.com/questions/56229207/export-mxnet-model-to-onnx-with-contrib-multiboxprior-error
```import mxnet as mx
import numpy as np
from mxnet.contrib import onnx as onnx_mxnet
import logging
logging.basicConfig(level=logging.INFO)
sym = './deploy_model_algo_1-symbol.json'
params = './deploy_model_algo_1-0000.params'
input_shape = (1,3,512,512)
onnx_file = './mxnet_exported.onnx'
converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file)```
have the same exact issue as @ban1080 :/
That makes 3, is there any manual work around for this?
Same issue here:
AttributeError: No conversion function registered for op type _contrib_MultiBoxPrior yet.
Incidentally I followed the same process as @ban1080.
meet the same issue on aws sagemaker. it seams that the version of onnx in sagemaker's mxnet is 1.2.1. however, I tried to upgrade to 1.6.0. after that, the issue still occur.
AttributeError Traceback (most recent call last)
1 # Invoke export model API. It returns path of the converted onnx model
----> 2 converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float16, onnx_file, True)
3
4 print(converted_model_path)
5 #converted_model_path = my_onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file, True)
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/contrib/onnx/mx2onnx/export_model.py in export_model(sym, params, input_shape, input_type, onnx_file_path, verbose)
81 onnx_graph = converter.create_onnx_graph_proto(sym_obj, params_obj, input_shape,
82 mapping.NP_TYPE_TO_TENSOR_TYPE[data_format],
---> 83 verbose=verbose)
84 elif isinstance(sym, symbol.Symbol) and isinstance(params, dict):
85 onnx_graph = converter.create_onnx_graph_proto(sym, params, input_shape,
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/contrib/onnx/mx2onnx/export_onnx.py in create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose)
251 initializer=initializer,
252 index_lookup=index_lookup,
--> 253 idx=idx
254 )
255
~/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/contrib/onnx/mx2onnx/export_onnx.py in convert_layer(node, *kwargs)
88 op = str(node["op"])
89 if op not in MXNetGraph.registry_:
---> 90 raise AttributeError("No conversion function registered for op type %s yet." % op)
91 convert_func = MXNetGraph.registry_[op]
92 return convert_func(node, *kwargs)
AttributeError: No conversion function registered for op type _contrib_MultiBoxPrior yet.
@cloudrivers onnx 1.6 has a different version of opset definition than previous versions, see https://github.com/onnx/onnx/blob/master/docs/Versioning.md#released-versions
@szha any suggestion or sample codes for this issue? Customer trained on the SageMaker but can't transform to ONNX.
Here is the repeatable issue code
Most helpful comment
I'm getting a "AttributeError: No conversion function registered for op type _contrib_MultiBoxPrior yet.". Same situations as https://stackoverflow.com/questions/56229207/export-mxnet-model-to-onnx-with-contrib-multiboxprior-error
```import mxnet as mx
import numpy as np
from mxnet.contrib import onnx as onnx_mxnet
import logging
logging.basicConfig(level=logging.INFO)
Downloaded input symbol and params files
sym = './deploy_model_algo_1-symbol.json'
params = './deploy_model_algo_1-0000.params'
Standard Imagenet input - 3 channels, 512*512
input_shape = (1,3,512,512)
Path of the output file
onnx_file = './mxnet_exported.onnx'
converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file)```