The inference result of a converted onnx model is not identical with the original mxnet model.
Ubuntu 18.04
python 3.6
mxnet 1.3.1
onnx 1.2.1
The light weight (1M) gender-age mxnet model can be download here
The mxnet model has been successfully converted to onnx model.
The script for converting a mxnet model to onnx model is:
import mxnet as mx
import numpy as np
from mxnet.contrib import onnx as onnx_mxnet
sym = './model-symbol.json'
params = './model-0000.params'
input_shape = (1,3,112,112)
# Path of the output file
onnx_file = './mxnet_exported_ga1m.onnx'
# Invoke export model API. It returns path of the converted onnx model
converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file)
print(converted_model_path)
import numpy as np
import mxnet as mx
from PIL import Image
import cv2
#load test image
img = cv2.imread('./images/112image.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2,0,1)).reshape([1,3,112,112])
data = mx.nd.array(img)
db = mx.io.DataBatch(data=(data,))
#load mxnet model
prefix = './model'
epoch = 0
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
model = mx.mod.Module(symbol=sym, label_names = None)
model.bind(data_shapes=[('data', (1, 3, 112, 112))])
model.set_params(arg_params, aux_params)
#inference
model.forward(db, is_train=False)
ret = model.get_outputs()[0].asnumpy()
print(ret)
import mxnet as mx
import numpy as np
import mxnet.contrib.onnx as onnx_mxnet
import cv2
#load test image
img = cv2.imread('./images/112image.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2,0,1)).reshape([1,3,112,112])
data = mx.nd.array(img)
db = mx.io.DataBatch(data=(data,))
#load onnx model
model_path = './mxnet_exported_ga1m.onnx'
sym, arg_params, aux_params = onnx_mxnet.import_model(model_path)
model = mx.mod.Module(symbol=sym, label_names = None)
model.bind(data_shapes=[('data', (1, 3, 112, 112))])
model.set_params(arg_params, aux_params)
#inference
model.forward(db, is_train=False)
ret = model.get_outputs()[0].asnumpy()
print(ret)
The output of the above two scripts is inconsistent.
Hey, this is the MXNet Label Bot.
Thank you for submitting the issue! I will try and suggest some labels so that the appropriate MXNet community members can help resolve it.
Here are my recommended labels: ONNX, Bug
@mxnet-label-bot Add [ONNX, Bug]
Thanks for your report!
We will check it.
@XinyuDu I downloaded your model, and given the code snippet, I was not able to convert it to ONNX.
I got the following error :
TypeError: __new__() got an unexpected keyword argument 'serialized_options'
@XinyuDu I downloaded your model, and given the code snippet, I was not able to convert it to ONNX.
I got the following error :TypeError: __new__() got an unexpected keyword argument 'serialized_options'
@piyushghai The converting script runs successfully in my environment. I think maybe you should try pip install -U protobuf before converting the model.
@XinyuDu Thanks I was missing protobuf.
So I was able to reproduce your issue.
I loaded both the models and found there is a difference in the layers in both of them.
I used mx.visualization.print_summary(symbol) to visualize the layers in the model.
Here's the one for MXNet only model :
Layer (type) Output Shape Param # Previous Layer
========================================================================================================================
data(null) 0
________________________________________________________________________________________________________________________
_minusscalar0(_minus_scalar) 0 data
________________________________________________________________________________________________________________________
_mulscalar0(_mul_scalar) 0 _minusscalar0
________________________________________________________________________________________________________________________
conv_1_conv2d(Convolution) 0 _mulscalar0
________________________________________________________________________________________________________________________
conv_1_batchnorm(BatchNorm) 0 conv_1_conv2d
________________________________________________________________________________________________________________________
conv_1_relu(Activation) 0 conv_1_batchnorm
________________________________________________________________________________________________________________________
conv_2_dw_conv2d(Convolution) 0 conv_1_relu
________________________________________________________________________________________________________________________
conv_2_dw_batchnorm(BatchNorm) 0 conv_2_dw_conv2d
________________________________________________________________________________________________________________________
conv_2_dw_relu(Activation) 0 conv_2_dw_batchnorm
________________________________________________________________________________________________________________________
conv_2_conv2d(Convolution) 0 conv_2_dw_relu
________________________________________________________________________________________________________________________
conv_2_batchnorm(BatchNorm) 0 conv_2_conv2d
________________________________________________________________________________________________________________________
conv_2_relu(Activation) 0 conv_2_batchnorm
________________________________________________________________________________________________________________________
conv_3_dw_conv2d(Convolution) 0 conv_2_relu
________________________________________________________________________________________________________________________
conv_3_dw_batchnorm(BatchNorm) 0 conv_3_dw_conv2d
________________________________________________________________________________________________________________________
conv_3_dw_relu(Activation) 0 conv_3_dw_batchnorm
________________________________________________________________________________________________________________________
conv_3_conv2d(Convolution) 0 conv_3_dw_relu
________________________________________________________________________________________________________________________
conv_3_batchnorm(BatchNorm) 0 conv_3_conv2d
________________________________________________________________________________________________________________________
conv_3_relu(Activation) 0 conv_3_batchnorm
________________________________________________________________________________________________________________________
conv_4_dw_conv2d(Convolution) 0 conv_3_relu
________________________________________________________________________________________________________________________
conv_4_dw_batchnorm(BatchNorm) 0 conv_4_dw_conv2d
________________________________________________________________________________________________________________________
conv_4_dw_relu(Activation) 0 conv_4_dw_batchnorm
________________________________________________________________________________________________________________________
conv_4_conv2d(Convolution) 0 conv_4_dw_relu
________________________________________________________________________________________________________________________
conv_4_batchnorm(BatchNorm) 0 conv_4_conv2d
________________________________________________________________________________________________________________________
conv_4_relu(Activation) 0 conv_4_batchnorm
________________________________________________________________________________________________________________________
conv_5_dw_conv2d(Convolution) 0 conv_4_relu
________________________________________________________________________________________________________________________
conv_5_dw_batchnorm(BatchNorm) 0 conv_5_dw_conv2d
________________________________________________________________________________________________________________________
conv_5_dw_relu(Activation) 0 conv_5_dw_batchnorm
________________________________________________________________________________________________________________________
conv_5_conv2d(Convolution) 0 conv_5_dw_relu
________________________________________________________________________________________________________________________
conv_5_batchnorm(BatchNorm) 0 conv_5_conv2d
________________________________________________________________________________________________________________________
conv_5_relu(Activation) 0 conv_5_batchnorm
________________________________________________________________________________________________________________________
conv_6_dw_conv2d(Convolution) 0 conv_5_relu
________________________________________________________________________________________________________________________
conv_6_dw_batchnorm(BatchNorm) 0 conv_6_dw_conv2d
________________________________________________________________________________________________________________________
conv_6_dw_relu(Activation) 0 conv_6_dw_batchnorm
________________________________________________________________________________________________________________________
conv_6_conv2d(Convolution) 0 conv_6_dw_relu
________________________________________________________________________________________________________________________
conv_6_batchnorm(BatchNorm) 0 conv_6_conv2d
________________________________________________________________________________________________________________________
conv_6_relu(Activation) 0 conv_6_batchnorm
________________________________________________________________________________________________________________________
conv_7_dw_conv2d(Convolution) 0 conv_6_relu
________________________________________________________________________________________________________________________
conv_7_dw_batchnorm(BatchNorm) 0 conv_7_dw_conv2d
________________________________________________________________________________________________________________________
conv_7_dw_relu(Activation) 0 conv_7_dw_batchnorm
________________________________________________________________________________________________________________________
conv_7_conv2d(Convolution) 0 conv_7_dw_relu
________________________________________________________________________________________________________________________
conv_7_batchnorm(BatchNorm) 0 conv_7_conv2d
________________________________________________________________________________________________________________________
conv_7_relu(Activation) 0 conv_7_batchnorm
________________________________________________________________________________________________________________________
conv_8_dw_conv2d(Convolution) 0 conv_7_relu
________________________________________________________________________________________________________________________
conv_8_dw_batchnorm(BatchNorm) 0 conv_8_dw_conv2d
________________________________________________________________________________________________________________________
conv_8_dw_relu(Activation) 0 conv_8_dw_batchnorm
________________________________________________________________________________________________________________________
conv_8_conv2d(Convolution) 0 conv_8_dw_relu
________________________________________________________________________________________________________________________
conv_8_batchnorm(BatchNorm) 0 conv_8_conv2d
________________________________________________________________________________________________________________________
conv_8_relu(Activation) 0 conv_8_batchnorm
________________________________________________________________________________________________________________________
conv_9_dw_conv2d(Convolution) 0 conv_8_relu
________________________________________________________________________________________________________________________
conv_9_dw_batchnorm(BatchNorm) 0 conv_9_dw_conv2d
________________________________________________________________________________________________________________________
conv_9_dw_relu(Activation) 0 conv_9_dw_batchnorm
________________________________________________________________________________________________________________________
conv_9_conv2d(Convolution) 0 conv_9_dw_relu
________________________________________________________________________________________________________________________
conv_9_batchnorm(BatchNorm) 0 conv_9_conv2d
________________________________________________________________________________________________________________________
conv_9_relu(Activation) 0 conv_9_batchnorm
________________________________________________________________________________________________________________________
conv_10_dw_conv2d(Convolution) 0 conv_9_relu
________________________________________________________________________________________________________________________
conv_10_dw_batchnorm(BatchNorm) 0 conv_10_dw_conv2d
________________________________________________________________________________________________________________________
conv_10_dw_relu(Activation) 0 conv_10_dw_batchnorm
________________________________________________________________________________________________________________________
conv_10_conv2d(Convolution) 0 conv_10_dw_relu
________________________________________________________________________________________________________________________
conv_10_batchnorm(BatchNorm) 0 conv_10_conv2d
________________________________________________________________________________________________________________________
conv_10_relu(Activation) 0 conv_10_batchnorm
________________________________________________________________________________________________________________________
conv_11_dw_conv2d(Convolution) 0 conv_10_relu
________________________________________________________________________________________________________________________
conv_11_dw_batchnorm(BatchNorm) 0 conv_11_dw_conv2d
________________________________________________________________________________________________________________________
conv_11_dw_relu(Activation) 0 conv_11_dw_batchnorm
________________________________________________________________________________________________________________________
conv_11_conv2d(Convolution) 0 conv_11_dw_relu
________________________________________________________________________________________________________________________
conv_11_batchnorm(BatchNorm) 0 conv_11_conv2d
________________________________________________________________________________________________________________________
conv_11_relu(Activation) 0 conv_11_batchnorm
________________________________________________________________________________________________________________________
conv_12_dw_conv2d(Convolution) 0 conv_11_relu
________________________________________________________________________________________________________________________
conv_12_dw_batchnorm(BatchNorm) 0 conv_12_dw_conv2d
________________________________________________________________________________________________________________________
conv_12_dw_relu(Activation) 0 conv_12_dw_batchnorm
________________________________________________________________________________________________________________________
conv_12_conv2d(Convolution) 0 conv_12_dw_relu
________________________________________________________________________________________________________________________
conv_12_batchnorm(BatchNorm) 0 conv_12_conv2d
________________________________________________________________________________________________________________________
conv_12_relu(Activation) 0 conv_12_batchnorm
________________________________________________________________________________________________________________________
conv_13_dw_conv2d(Convolution) 0 conv_12_relu
________________________________________________________________________________________________________________________
conv_13_dw_batchnorm(BatchNorm) 0 conv_13_dw_conv2d
________________________________________________________________________________________________________________________
conv_13_dw_relu(Activation) 0 conv_13_dw_batchnorm
________________________________________________________________________________________________________________________
conv_13_conv2d(Convolution) 0 conv_13_dw_relu
________________________________________________________________________________________________________________________
conv_13_batchnorm(BatchNorm) 0 conv_13_conv2d
________________________________________________________________________________________________________________________
conv_13_relu(Activation) 0 conv_13_batchnorm
________________________________________________________________________________________________________________________
conv_14_dw_conv2d(Convolution) 0 conv_13_relu
________________________________________________________________________________________________________________________
conv_14_dw_batchnorm(BatchNorm) 0 conv_14_dw_conv2d
________________________________________________________________________________________________________________________
conv_14_dw_relu(Activation) 0 conv_14_dw_batchnorm
________________________________________________________________________________________________________________________
conv_14_conv2d(Convolution) 0 conv_14_dw_relu
________________________________________________________________________________________________________________________
conv_14_batchnorm(BatchNorm) 0 conv_14_conv2d
________________________________________________________________________________________________________________________
conv_14_relu(Activation) 0 conv_14_batchnorm
________________________________________________________________________________________________________________________
bn1(BatchNorm) 0 conv_14_relu
________________________________________________________________________________________________________________________
relu1(LeakyReLU) 0 bn1
________________________________________________________________________________________________________________________
pool1(Pooling) 0 relu1
________________________________________________________________________________________________________________________
flatten0(Flatten) 0 pool1
________________________________________________________________________________________________________________________
pre_fc1(FullyConnected) 202 flatten0
________________________________________________________________________________________________________________________
fc1(BatchNorm) 0 pre_fc1
========================================================================================================================
Total params: 202
________________________________________________________________________________________________________________________
Here's on that was converted from ONNX to MXNet :
In [24]: mx.visualization.print_summary(sym)
________________________________________________________________________________________________________________________
Layer (type) Output Shape Param # Previous Layer
========================================================================================================================
data(null) 0
________________________________________________________________________________________________________________________
_minusscalar0(broadcast_sub) 0 data
________________________________________________________________________________________________________________________
_mulscalar0(broadcast_mul) 0 _minusscalar0
________________________________________________________________________________________________________________________
pad27(Pad) 0 _mulscalar0
________________________________________________________________________________________________________________________
convolution27(Convolution) 0 pad27
________________________________________________________________________________________________________________________
conv_1_batchnorm(BatchNorm) 0 convolution27
________________________________________________________________________________________________________________________
conv_1_relu(relu) 0 conv_1_batchnorm
________________________________________________________________________________________________________________________
pad28(Pad) 0 conv_1_relu
________________________________________________________________________________________________________________________
convolution28(Convolution) 0 pad28
________________________________________________________________________________________________________________________
conv_2_dw_batchnorm(BatchNorm) 0 convolution28
________________________________________________________________________________________________________________________
conv_2_dw_relu(relu) 0 conv_2_dw_batchnorm
________________________________________________________________________________________________________________________
pad29(Pad) 0 conv_2_dw_relu
________________________________________________________________________________________________________________________
convolution29(Convolution) 0 pad29
________________________________________________________________________________________________________________________
conv_2_batchnorm(BatchNorm) 0 convolution29
________________________________________________________________________________________________________________________
conv_2_relu(relu) 0 conv_2_batchnorm
________________________________________________________________________________________________________________________
pad30(Pad) 0 conv_2_relu
________________________________________________________________________________________________________________________
convolution30(Convolution) 0 pad30
________________________________________________________________________________________________________________________
conv_3_dw_batchnorm(BatchNorm) 0 convolution30
________________________________________________________________________________________________________________________
conv_3_dw_relu(relu) 0 conv_3_dw_batchnorm
________________________________________________________________________________________________________________________
pad31(Pad) 0 conv_3_dw_relu
________________________________________________________________________________________________________________________
convolution31(Convolution) 0 pad31
________________________________________________________________________________________________________________________
conv_3_batchnorm(BatchNorm) 0 convolution31
________________________________________________________________________________________________________________________
conv_3_relu(relu) 0 conv_3_batchnorm
________________________________________________________________________________________________________________________
pad32(Pad) 0 conv_3_relu
________________________________________________________________________________________________________________________
convolution32(Convolution) 0 pad32
________________________________________________________________________________________________________________________
conv_4_dw_batchnorm(BatchNorm) 0 convolution32
________________________________________________________________________________________________________________________
conv_4_dw_relu(relu) 0 conv_4_dw_batchnorm
________________________________________________________________________________________________________________________
pad33(Pad) 0 conv_4_dw_relu
________________________________________________________________________________________________________________________
convolution33(Convolution) 0 pad33
________________________________________________________________________________________________________________________
conv_4_batchnorm(BatchNorm) 0 convolution33
________________________________________________________________________________________________________________________
conv_4_relu(relu) 0 conv_4_batchnorm
________________________________________________________________________________________________________________________
pad34(Pad) 0 conv_4_relu
________________________________________________________________________________________________________________________
convolution34(Convolution) 0 pad34
________________________________________________________________________________________________________________________
conv_5_dw_batchnorm(BatchNorm) 0 convolution34
________________________________________________________________________________________________________________________
conv_5_dw_relu(relu) 0 conv_5_dw_batchnorm
________________________________________________________________________________________________________________________
pad35(Pad) 0 conv_5_dw_relu
________________________________________________________________________________________________________________________
convolution35(Convolution) 0 pad35
________________________________________________________________________________________________________________________
conv_5_batchnorm(BatchNorm) 0 convolution35
________________________________________________________________________________________________________________________
conv_5_relu(relu) 0 conv_5_batchnorm
________________________________________________________________________________________________________________________
pad36(Pad) 0 conv_5_relu
________________________________________________________________________________________________________________________
convolution36(Convolution) 0 pad36
________________________________________________________________________________________________________________________
conv_6_dw_batchnorm(BatchNorm) 0 convolution36
________________________________________________________________________________________________________________________
conv_6_dw_relu(relu) 0 conv_6_dw_batchnorm
________________________________________________________________________________________________________________________
pad37(Pad) 0 conv_6_dw_relu
________________________________________________________________________________________________________________________
convolution37(Convolution) 0 pad37
________________________________________________________________________________________________________________________
conv_6_batchnorm(BatchNorm) 0 convolution37
________________________________________________________________________________________________________________________
conv_6_relu(relu) 0 conv_6_batchnorm
________________________________________________________________________________________________________________________
pad38(Pad) 0 conv_6_relu
________________________________________________________________________________________________________________________
convolution38(Convolution) 0 pad38
________________________________________________________________________________________________________________________
conv_7_dw_batchnorm(BatchNorm) 0 convolution38
________________________________________________________________________________________________________________________
conv_7_dw_relu(relu) 0 conv_7_dw_batchnorm
________________________________________________________________________________________________________________________
pad39(Pad) 0 conv_7_dw_relu
________________________________________________________________________________________________________________________
convolution39(Convolution) 0 pad39
________________________________________________________________________________________________________________________
conv_7_batchnorm(BatchNorm) 0 convolution39
________________________________________________________________________________________________________________________
conv_7_relu(relu) 0 conv_7_batchnorm
________________________________________________________________________________________________________________________
pad40(Pad) 0 conv_7_relu
________________________________________________________________________________________________________________________
convolution40(Convolution) 0 pad40
________________________________________________________________________________________________________________________
conv_8_dw_batchnorm(BatchNorm) 0 convolution40
________________________________________________________________________________________________________________________
conv_8_dw_relu(relu) 0 conv_8_dw_batchnorm
________________________________________________________________________________________________________________________
pad41(Pad) 0 conv_8_dw_relu
________________________________________________________________________________________________________________________
convolution41(Convolution) 0 pad41
________________________________________________________________________________________________________________________
conv_8_batchnorm(BatchNorm) 0 convolution41
________________________________________________________________________________________________________________________
conv_8_relu(relu) 0 conv_8_batchnorm
________________________________________________________________________________________________________________________
pad42(Pad) 0 conv_8_relu
________________________________________________________________________________________________________________________
convolution42(Convolution) 0 pad42
________________________________________________________________________________________________________________________
conv_9_dw_batchnorm(BatchNorm) 0 convolution42
________________________________________________________________________________________________________________________
conv_9_dw_relu(relu) 0 conv_9_dw_batchnorm
________________________________________________________________________________________________________________________
pad43(Pad) 0 conv_9_dw_relu
________________________________________________________________________________________________________________________
convolution43(Convolution) 0 pad43
________________________________________________________________________________________________________________________
conv_9_batchnorm(BatchNorm) 0 convolution43
________________________________________________________________________________________________________________________
conv_9_relu(relu) 0 conv_9_batchnorm
________________________________________________________________________________________________________________________
pad44(Pad) 0 conv_9_relu
________________________________________________________________________________________________________________________
convolution44(Convolution) 0 pad44
________________________________________________________________________________________________________________________
conv_10_dw_batchnorm(BatchNorm) 0 convolution44
________________________________________________________________________________________________________________________
conv_10_dw_relu(relu) 0 conv_10_dw_batchnorm
________________________________________________________________________________________________________________________
pad45(Pad) 0 conv_10_dw_relu
________________________________________________________________________________________________________________________
convolution45(Convolution) 0 pad45
________________________________________________________________________________________________________________________
conv_10_batchnorm(BatchNorm) 0 convolution45
________________________________________________________________________________________________________________________
conv_10_relu(relu) 0 conv_10_batchnorm
________________________________________________________________________________________________________________________
pad46(Pad) 0 conv_10_relu
________________________________________________________________________________________________________________________
convolution46(Convolution) 0 pad46
________________________________________________________________________________________________________________________
conv_11_dw_batchnorm(BatchNorm) 0 convolution46
________________________________________________________________________________________________________________________
conv_11_dw_relu(relu) 0 conv_11_dw_batchnorm
________________________________________________________________________________________________________________________
pad47(Pad) 0 conv_11_dw_relu
________________________________________________________________________________________________________________________
convolution47(Convolution) 0 pad47
________________________________________________________________________________________________________________________
conv_11_batchnorm(BatchNorm) 0 convolution47
________________________________________________________________________________________________________________________
conv_11_relu(relu) 0 conv_11_batchnorm
________________________________________________________________________________________________________________________
pad48(Pad) 0 conv_11_relu
________________________________________________________________________________________________________________________
convolution48(Convolution) 0 pad48
________________________________________________________________________________________________________________________
conv_12_dw_batchnorm(BatchNorm) 0 convolution48
________________________________________________________________________________________________________________________
conv_12_dw_relu(relu) 0 conv_12_dw_batchnorm
________________________________________________________________________________________________________________________
pad49(Pad) 0 conv_12_dw_relu
________________________________________________________________________________________________________________________
convolution49(Convolution) 0 pad49
________________________________________________________________________________________________________________________
conv_12_batchnorm(BatchNorm) 0 convolution49
________________________________________________________________________________________________________________________
conv_12_relu(relu) 0 conv_12_batchnorm
________________________________________________________________________________________________________________________
pad50(Pad) 0 conv_12_relu
________________________________________________________________________________________________________________________
convolution50(Convolution) 0 pad50
________________________________________________________________________________________________________________________
conv_13_dw_batchnorm(BatchNorm) 0 convolution50
________________________________________________________________________________________________________________________
conv_13_dw_relu(relu) 0 conv_13_dw_batchnorm
________________________________________________________________________________________________________________________
pad51(Pad) 0 conv_13_dw_relu
________________________________________________________________________________________________________________________
convolution51(Convolution) 0 pad51
________________________________________________________________________________________________________________________
conv_13_batchnorm(BatchNorm) 0 convolution51
________________________________________________________________________________________________________________________
conv_13_relu(relu) 0 conv_13_batchnorm
________________________________________________________________________________________________________________________
pad52(Pad) 0 conv_13_relu
________________________________________________________________________________________________________________________
convolution52(Convolution) 0 pad52
________________________________________________________________________________________________________________________
conv_14_dw_batchnorm(BatchNorm) 0 convolution52
________________________________________________________________________________________________________________________
conv_14_dw_relu(relu) 0 conv_14_dw_batchnorm
________________________________________________________________________________________________________________________
pad53(Pad) 0 conv_14_dw_relu
________________________________________________________________________________________________________________________
convolution53(Convolution) 0 pad53
________________________________________________________________________________________________________________________
conv_14_batchnorm(BatchNorm) 0 convolution53
________________________________________________________________________________________________________________________
conv_14_relu(relu) 0 conv_14_batchnorm
________________________________________________________________________________________________________________________
bn1(BatchNorm) 0 conv_14_relu
________________________________________________________________________________________________________________________
relu1(LeakyReLU) 0 bn1
________________________________________________________________________________________________________________________
pool1(Pooling) 0 relu1
________________________________________________________________________________________________________________________
flatten0(Flatten) 0 pool1
________________________________________________________________________________________________________________________
flatten1(Flatten) 0 flatten0
________________________________________________________________________________________________________________________
linalg_gemm21(_linalg_gemm2) 0 flatten1
________________________________________________________________________________________________________________________
_mulscalar1(_mul_scalar) 0
________________________________________________________________________________________________________________________
broadcast_add1(broadcast_add) 0 linalg_gemm21
_mulscalar1
________________________________________________________________________________________________________________________
fc1(BatchNorm) 0 broadcast_add1
========================================================================================================================
Total params: 0
________________________________________________________________________________________________________________________
The model summaries start deviating from the Convolution layer itself and I believe this is the reason why you are seeing different inference outputs.
could you check the behavior with count_include_pad=True and with count_include_pad=False in Pooling. Based on info from https://github.com/apache/incubator-mxnet/issues/10194
@mxnet-label-bot add [Pending Requester Info]
@XinyuDu Close this issue due to inactivity. Please feel free to reopen if problem persist
Most helpful comment
@XinyuDu Thanks I was missing protobuf.
So I was able to reproduce your issue.
I loaded both the models and found there is a difference in the layers in both of them.
I used
mx.visualization.print_summary(symbol)to visualize the layers in the model.Here's the one for MXNet only model :
Here's on that was converted from ONNX to MXNet :
The model summaries start deviating from the Convolution layer itself and I believe this is the reason why you are seeing different inference outputs.