Running the code below causes the entire R environment to terminate. This code used to work on older versions of mxnet (older than 1.2.0). It seems to be related to mx.io.arrayiter
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mxnet_1.3.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 pillar_1.2.2 compiler_3.5.0 RColorBrewer_1.1-2 influenceR_0.1.0 plyr_1.8.4
[7] bindr_0.1.1 viridis_0.5.1 tools_3.5.0 digest_0.6.15 jsonlite_1.5 viridisLite_0.3.0
[13] tibble_1.4.2 gtable_0.2.0 rgexf_0.15.3 pkgconfig_2.0.1 rlang_0.2.0 igraph_1.2.1
[19] rstudioapi_0.7 yaml_2.1.19 bindrcpp_0.2.2 gridExtra_2.3 downloader_0.4 DiagrammeR_1.0.0
[25] dplyr_0.7.4 stringr_1.3.1 htmlwidgets_1.2 hms_0.4.2 grid_3.5.0 glue_1.2.0
[31] R6_2.2.2 Rook_1.1-1 XML_3.98-1.11 readr_1.1.1 purrr_0.2.4 tidyr_0.8.0
[37] ggplot2_2.2.1 magrittr_1.5 codetools_0.2-15 scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
[43] colorspace_1.3-2 brew_1.0-6 stringi_1.2.2 visNetwork_2.0.3 lazyeval_0.2.1 munsell_0.4.3
https://github.com/apache/incubator-mxnet/tree/master/R-package
cran <- getOption("repos")
cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/"
options(repos = cran)
install.packages("mxnet")
R environment crashes.
data.A = read.csv("./matty_inv/A.csv", header = FALSE)
data.A.2 = read.csv("./matty_inv/A_2.csv", header = FALSE)
data.A <- as.matrix(data.A)
data.A.2 <- as.matrix(data.A.2)
dim(data.A) <- c(3,3,1,10)
dim(data.A.2) <- c(3,3,1,10)
train_iter = mx.io.arrayiter(data = data.A,
label = data.A.2,
batch.size = 1)
data <- mx.symbol.Variable('data')
label <- mx.symbol.Variable('label')
conv_1 <- mx.symbol.Convolution(data= data, kernel = c(1,1), num_filter = 4, name="conv_1")
conv_act_1 <- mx.symbol.Activation(data= conv_1, act_type = "relu", name="conv_act_1")
flat <- mx.symbol.flatten(data = conv_act_1, name="flatten")
fcl_1 <- mx.symbol.FullyConnected(data = flat, num_hidden = 9, name="fc_1")
fcl_2 <- mx.symbol.reshape(fcl_1, shape=c(3,3, 1, batch_size))
NN_Model <- mx.symbol.LinearRegressionOutput(data=fcl_2 , label=label, name="lro")
mx.set.seed(99)
autoencoder <- mx.model.FeedForward.create(
NN_Model, X=train_iter, initializer = mx.init.uniform(0.01),
ctx=mx.cpu(), num.round=n.rounds, array.batch.size=batch_size,
learning.rate=8e-3, array.layout = "rowmajor",
eval.metric = mx.metric.rmse, optimizer = "adam",
verbose = TRUE)
Can you specify where the syntax is wrong? Also, I think it would be best practice for mxnet to throw an error instead of causing the R environment to crash.
@mxnet-label-bot [R, Bug, Data-loading]
@some-guy1 can you please share a small snapshot of these two data files ./matty_inv/A.csv and ./matty_inv/A_2.csv
The csv files are identical:

I can confirm that:
train_iter$reset()
train_iter$iter.next()
train_iter$value()
Results in the expected:
$`data`
, , 1, 1
[,1] [,2] [,3]
[1,] 1.373546 3.595281 2.487429
[2,] 2.183643 2.329508 2.738325
[3,] 1.164371 1.179532 2.575781
$label
, , 1, 1
[,1] [,2] [,3]
[1,] 1.373546 3.595281 2.487429
[2,] 2.183643 2.329508 2.738325
[3,] 1.164371 1.179532 2.575781
So I have no idea why the entire R environment crashes when I started the training. Mxnet states it is starting to train, then everything crashes.
I think the issue comes from the evaluation metric. The following code include a modified rmse metric that flatten the pred and label vector. I think it's bug that the eval metric fails when the predictions are not in a flat setting, I'll open a PR to get it fixed.
data.A <- mx.nd.random.normal(shape = c(3,3,1,10))
data.A.2 <- mx.nd.random.normal(shape = c(3,3,1,10))
batch_size <- 5
train_iter = mx.io.arrayiter(data = as.array(data.A),
label = as.array(data.A.2),
batch.size = batch_size)
data <- mx.symbol.Variable('data')
label <- mx.symbol.Variable('label')
conv_1 <- mx.symbol.Convolution(data= data, kernel = c(1,1), num_filter = 4, name="conv_1")
conv_act_1 <- mx.symbol.Activation(data= conv_1, act_type = "relu", name="conv_act_1")
flat <- mx.symbol.flatten(data = conv_act_1, name="flatten")
fcl_1 <- mx.symbol.FullyConnected(data = flat, num_hidden = 9, name="fc_1")
fcl_2 <- mx.symbol.reshape(fcl_1, shape=c(3, 3, 1, batch_size))
NN_Model <- mx.symbol.LinearRegressionOutput(data=fcl_2 , label=label, name="lro")
fcl_2$infer.shape(list(data = c(3,3,1,batch_size)))
NN_Model$infer.shape(list(data = c(3,3,1,batch_size)))
mx.metric.rmse <- mx.metric.custom("rmse", function(label, pred) {
pred <- mx.nd.reshape(pred, shape = -1)
label <- mx.nd.reshape(label, shape = -1)
res <- mx.nd.sqrt(mx.nd.mean(mx.nd.square(label-pred)))
return(as.array(res))
})
mx.set.seed(99)
autoencoder <- mx.model.FeedForward.create(
NN_Model,
X = train_iter,
initializer = mx.init.uniform(0.01),
ctx=mx.cpu(),
num.round=5,
eval.metric = mx.metric.rmse,
optimizer = mx.opt.create("sgd"),
verbose = TRUE)
Thank you for the explanation!
@jeremiedb Were you able to open a PR for this ?
If yes, can you link the PR to this issue to that it can be tracked ?
@piyushghai Thanks for the reminder, I just open the PR.
@some-guy1 The PR for fixing this got merged. Can you verify and close this issue if the bug is bug ?
Thanks!
@sandeep-krishnamurthy The related PR is merged. The new R-package will include this fix when we release the new binaries of R along with the next MXNet release.
Please close this issue.
@some-guy1 Please feel free to re-open if closed in error. In case you want to instantly verify the fix, you can follow the instructions to build the R-package from source here : https://mxnet.incubator.apache.org/install/index.html?platform=Linux&language=R&processor=CPU
Most helpful comment
I think the issue comes from the evaluation metric. The following code include a modified rmse metric that flatten the pred and label vector. I think it's bug that the eval metric fails when the predictions are not in a flat setting, I'll open a PR to get it fixed.