where can i find train.rec and test.rec for cifar100
The train.rec
and test.rec
is generated by original Alex's python format. We first dump images from the binary file, then pack them into rec file. Note you don't need to set resize
parameter for im2rec in this case
A sample code I used before to dump images:
import os
import sys
import pickle
import csv
import numpy as np
from PIL import Image
if len(sys.argv) < 3:
print "usage: convert cifar.pkl output_root_folder_path output_list_path"
exit(-1)
cifar = pickle.load(file(sys.argv[1]))
root = sys.argv[2]
try:
os.mkdir(root)
except:
print "%s exists, ignore"
fo = csv.writer(open(sys.argv[3], "w"), lineterminator='\n', delimiter='\t')
data = cifar['data']
label = cifar['fine_labels']
path = cifar['filenames']
sz = data.shape[0]
for i in xrange(sz):
if i % 1000 == 0:
print i
img = data[i]
p = path[i]
img = img.reshape((3, 32, 32))
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 0, 1)
im = Image.fromarray(img)
im.save(root + p)
row = [i, label[i], p]
fo.writerow(row)
link to binary version of data http://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz binary version of data, also can you share your trained model for cifar100 like cafe.
Do you know what networks are suitable for cifar100 to get to a high testing accuracy?@ranti-iitg @antinucleon
Most helpful comment
The
train.rec
andtest.rec
is generated by original Alex's python format. We first dump images from the binary file, then pack them into rec file. Note you don't need to setresize
parameter for im2rec in this caseA sample code I used before to dump images: