Caffe: dynamic input

Created on 23 Apr 2015  路  2Comments  路  Source: BVLC/caffe

I've made test with mnist example in which batch_size: 1 to be sure that reshaping works correctly.
But in this mode ( batch_size: 1 ) the classifier has very low accuracy.
Please provide some explanation for this test, is it possible to fix this problem by changing solver config parameters?

I0423 16:16:02.053493 32732 caffe.cpp:99] Use GPU with device ID 0
I0423 16:16:02.189038 32732 caffe.cpp:107] Starting Optimization
I0423 16:16:02.189163 32732 solver.cpp:32] Initializing solver from parameters:
test_iter: 100
test_interval: 10000
base_lr: 0.01
display: 5000
max_iter: 100000
lr_policy: "inv"
gamma: 1e-06
power: 0.98
momentum: 0.9
weight_decay: 0.0005
snapshot: 100000
snapshot_prefix: "/home/nazar/caffe/examples/mnist/lenet"
solver_mode: GPU
net: "/home/nazar/caffe/examples/mnist/lenet_train_test.prototxt"
I0423 16:16:02.189330 32732 solver.cpp:70] Creating training net from net file: /home/nazar/caffe/examples/mnist/lenet_train_test.prototxt
I0423 16:16:02.189879 32732 net.cpp:253] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I0423 16:16:02.189905 32732 net.cpp:253] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0423 16:16:02.189988 32732 net.cpp:42] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/nazar/caffe/examples/mnist/mnist_train_lmdb"
batch_size: 1
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0423 16:16:02.190436 32732 net.cpp:59] Memory required for data: 0
I0423 16:16:02.190553 32732 layer_factory.hpp:74] Creating layer mnist
I0423 16:16:02.190611 32732 net.cpp:76] Creating Layer mnist
I0423 16:16:02.190650 32732 net.cpp:334] mnist -> data
I0423 16:16:02.190753 32732 net.cpp:334] mnist -> label
I0423 16:16:02.190780 32732 net.cpp:105] Setting up mnist
I0423 16:16:02.190870 32732 db.cpp:34] Opened lmdb /home/nazar/caffe/examples/mnist/mnist_train_lmdb
I0423 16:16:02.190929 32732 data_layer.cpp:67] output data size: 1,1,28,28
I0423 16:16:02.190950 32732 base_data_layer.cpp:43] Initializing prefetch
I0423 16:16:02.191025 32732 base_data_layer.cpp:45] Prefetch initialized.
I0423 16:16:02.191058 32732 net.cpp:112] Top shape: 1 1 28 28 (784)
I0423 16:16:02.191066 32732 net.cpp:112] Top shape: 1 1 1 1 (1)
I0423 16:16:02.191079 32732 net.cpp:122] Memory required for data: 3140
I0423 16:16:02.191089 32732 layer_factory.hpp:74] Creating layer conv1
I0423 16:16:02.191133 32732 net.cpp:76] Creating Layer conv1
I0423 16:16:02.191148 32732 net.cpp:372] conv1 <- data
I0423 16:16:02.191231 32732 net.cpp:334] conv1 -> conv1
I0423 16:16:02.191253 32732 net.cpp:105] Setting up conv1
I0423 16:16:02.191648 32732 net.cpp:112] Top shape: 1 20 24 24 (11520)
I0423 16:16:02.191665 32732 net.cpp:122] Memory required for data: 49220
I0423 16:16:02.191720 32732 layer_factory.hpp:74] Creating layer pool1
I0423 16:16:02.191756 32732 net.cpp:76] Creating Layer pool1
I0423 16:16:02.191766 32732 net.cpp:372] pool1 <- conv1
I0423 16:16:02.191786 32732 net.cpp:334] pool1 -> pool1
I0423 16:16:02.191802 32732 net.cpp:105] Setting up pool1
I0423 16:16:02.191820 32732 net.cpp:112] Top shape: 1 20 12 12 (2880)
I0423 16:16:02.191828 32732 net.cpp:122] Memory required for data: 60740
I0423 16:16:02.191833 32732 layer_factory.hpp:74] Creating layer conv2
I0423 16:16:02.191848 32732 net.cpp:76] Creating Layer conv2
I0423 16:16:02.191856 32732 net.cpp:372] conv2 <- pool1
I0423 16:16:02.191874 32732 net.cpp:334] conv2 -> conv2
I0423 16:16:02.191892 32732 net.cpp:105] Setting up conv2
I0423 16:16:02.192935 32732 net.cpp:112] Top shape: 1 50 8 8 (3200)
I0423 16:16:02.192946 32732 net.cpp:122] Memory required for data: 73540
I0423 16:16:02.192965 32732 layer_factory.hpp:74] Creating layer pool2
I0423 16:16:02.192984 32732 net.cpp:76] Creating Layer pool2
I0423 16:16:02.192993 32732 net.cpp:372] pool2 <- conv2
I0423 16:16:02.193009 32732 net.cpp:334] pool2 -> pool2
I0423 16:16:02.193027 32732 net.cpp:105] Setting up pool2
I0423 16:16:02.193040 32732 net.cpp:112] Top shape: 1 50 4 4 (800)
I0423 16:16:02.193048 32732 net.cpp:122] Memory required for data: 76740
I0423 16:16:02.193053 32732 layer_factory.hpp:74] Creating layer ip1
I0423 16:16:02.193069 32732 net.cpp:76] Creating Layer ip1
I0423 16:16:02.193078 32732 net.cpp:372] ip1 <- pool2
I0423 16:16:02.193094 32732 net.cpp:334] ip1 -> ip1
I0423 16:16:02.193109 32732 net.cpp:105] Setting up ip1
I0423 16:16:02.208894 32732 net.cpp:112] Top shape: 1 500 1 1 (500)
I0423 16:16:02.208912 32732 net.cpp:122] Memory required for data: 78740
I0423 16:16:02.208936 32732 layer_factory.hpp:74] Creating layer relu1
I0423 16:16:02.208967 32732 net.cpp:76] Creating Layer relu1
I0423 16:16:02.208977 32732 net.cpp:372] relu1 <- ip1
I0423 16:16:02.209012 32732 net.cpp:323] relu1 -> ip1 (in-place)
I0423 16:16:02.209025 32732 net.cpp:105] Setting up relu1
I0423 16:16:02.209033 32732 net.cpp:112] Top shape: 1 500 1 1 (500)
I0423 16:16:02.209041 32732 net.cpp:122] Memory required for data: 80740
I0423 16:16:02.209048 32732 layer_factory.hpp:74] Creating layer ip2
I0423 16:16:02.209064 32732 net.cpp:76] Creating Layer ip2
I0423 16:16:02.209071 32732 net.cpp:372] ip2 <- ip1
I0423 16:16:02.209087 32732 net.cpp:334] ip2 -> ip2
I0423 16:16:02.209103 32732 net.cpp:105] Setting up ip2
I0423 16:16:02.209425 32732 net.cpp:112] Top shape: 1 10 1 1 (10)
I0423 16:16:02.209434 32732 net.cpp:122] Memory required for data: 80780
I0423 16:16:02.209455 32732 layer_factory.hpp:74] Creating layer loss
I0423 16:16:02.209488 32732 net.cpp:76] Creating Layer loss
I0423 16:16:02.209506 32732 net.cpp:372] loss <- ip2
I0423 16:16:02.209527 32732 net.cpp:372] loss <- label
I0423 16:16:02.209561 32732 net.cpp:334] loss -> loss
I0423 16:16:02.209596 32732 net.cpp:105] Setting up loss
I0423 16:16:02.209614 32732 layer_factory.hpp:74] Creating layer loss
I0423 16:16:02.209645 32732 net.cpp:112] Top shape: 1 1 1 1 (1)
I0423 16:16:02.209652 32732 net.cpp:118] with loss weight 1
I0423 16:16:02.209671 32732 net.cpp:122] Memory required for data: 80784
I0423 16:16:02.209678 32732 net.cpp:163] loss needs backward computation.
I0423 16:16:02.209686 32732 net.cpp:163] ip2 needs backward computation.
I0423 16:16:02.209693 32732 net.cpp:163] relu1 needs backward computation.
I0423 16:16:02.209698 32732 net.cpp:163] ip1 needs backward computation.
I0423 16:16:02.209704 32732 net.cpp:163] pool2 needs backward computation.
I0423 16:16:02.209710 32732 net.cpp:163] conv2 needs backward computation.
I0423 16:16:02.209717 32732 net.cpp:163] pool1 needs backward computation.
I0423 16:16:02.209722 32732 net.cpp:163] conv1 needs backward computation.
I0423 16:16:02.209731 32732 net.cpp:165] mnist does not need backward computation.
I0423 16:16:02.209740 32732 net.cpp:201] This network produces output loss
I0423 16:16:02.209767 32732 net.cpp:446] Collecting Learning Rate and Weight Decay.
I0423 16:16:02.209781 32732 net.cpp:213] Network initialization done.
I0423 16:16:02.209787 32732 net.cpp:214] Memory required for data: 80784
I0423 16:16:02.210162 32732 solver.cpp:154] Creating test net (#0) specified by net file: /home/nazar/caffe/examples/mnist/lenet_train_test.prototxt
I0423 16:16:02.210249 32732 net.cpp:253] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist
I0423 16:16:02.210396 32732 net.cpp:42] Initializing net from parameters:
name: "LeNet"
state {
phase: TEST
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/nazar/caffe/examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0423 16:16:02.210849 32732 net.cpp:59] Memory required for data: 0
I0423 16:16:02.210902 32732 layer_factory.hpp:74] Creating layer mnist
I0423 16:16:02.210933 32732 net.cpp:76] Creating Layer mnist
I0423 16:16:02.210947 32732 net.cpp:334] mnist -> data
I0423 16:16:02.210980 32732 net.cpp:334] mnist -> label
I0423 16:16:02.211007 32732 net.cpp:105] Setting up mnist
I0423 16:16:02.211069 32732 db.cpp:34] Opened lmdb /home/nazar/caffe/examples/mnist/mnist_test_lmdb
I0423 16:16:02.211102 32732 data_layer.cpp:67] output data size: 100,1,28,28
I0423 16:16:02.211189 32732 base_data_layer.cpp:43] Initializing prefetch
I0423 16:16:02.211231 32732 base_data_layer.cpp:45] Prefetch initialized.
I0423 16:16:02.211251 32732 net.cpp:112] Top shape: 100 1 28 28 (78400)
I0423 16:16:02.211258 32732 net.cpp:112] Top shape: 100 1 1 1 (100)
I0423 16:16:02.211264 32732 net.cpp:122] Memory required for data: 314000
I0423 16:16:02.211272 32732 layer_factory.hpp:74] Creating layer label_mnist_1_split
I0423 16:16:02.211298 32732 net.cpp:76] Creating Layer label_mnist_1_split
I0423 16:16:02.211309 32732 net.cpp:372] label_mnist_1_split <- label
I0423 16:16:02.211323 32732 net.cpp:334] label_mnist_1_split -> label_mnist_1_split_0
I0423 16:16:02.211343 32732 net.cpp:334] label_mnist_1_split -> label_mnist_1_split_1
I0423 16:16:02.211357 32732 net.cpp:105] Setting up label_mnist_1_split
I0423 16:16:02.211370 32732 net.cpp:112] Top shape: 100 1 1 1 (100)
I0423 16:16:02.211382 32732 net.cpp:112] Top shape: 100 1 1 1 (100)
I0423 16:16:02.211387 32732 net.cpp:122] Memory required for data: 314800
I0423 16:16:02.211393 32732 layer_factory.hpp:74] Creating layer conv1
I0423 16:16:02.211415 32732 net.cpp:76] Creating Layer conv1
I0423 16:16:02.211424 32732 net.cpp:372] conv1 <- data
I0423 16:16:02.211442 32732 net.cpp:334] conv1 -> conv1
I0423 16:16:02.211460 32732 net.cpp:105] Setting up conv1
I0423 16:16:02.211515 32732 net.cpp:112] Top shape: 100 20 24 24 (1152000)
I0423 16:16:02.211525 32732 net.cpp:122] Memory required for data: 4922800
I0423 16:16:02.211546 32732 layer_factory.hpp:74] Creating layer pool1
I0423 16:16:02.211563 32732 net.cpp:76] Creating Layer pool1
I0423 16:16:02.211572 32732 net.cpp:372] pool1 <- conv1
I0423 16:16:02.211588 32732 net.cpp:334] pool1 -> pool1
I0423 16:16:02.211603 32732 net.cpp:105] Setting up pool1
I0423 16:16:02.211616 32732 net.cpp:112] Top shape: 100 20 12 12 (288000)
I0423 16:16:02.211622 32732 net.cpp:122] Memory required for data: 6074800
I0423 16:16:02.211629 32732 layer_factory.hpp:74] Creating layer conv2
I0423 16:16:02.211647 32732 net.cpp:76] Creating Layer conv2
I0423 16:16:02.211658 32732 net.cpp:372] conv2 <- pool1
I0423 16:16:02.211674 32732 net.cpp:334] conv2 -> conv2
I0423 16:16:02.211690 32732 net.cpp:105] Setting up conv2
I0423 16:16:02.212716 32732 net.cpp:112] Top shape: 100 50 8 8 (320000)
I0423 16:16:02.212729 32732 net.cpp:122] Memory required for data: 7354800
I0423 16:16:02.212748 32732 layer_factory.hpp:74] Creating layer pool2
I0423 16:16:02.212764 32732 net.cpp:76] Creating Layer pool2
I0423 16:16:02.212774 32732 net.cpp:372] pool2 <- conv2
I0423 16:16:02.212790 32732 net.cpp:334] pool2 -> pool2
I0423 16:16:02.212803 32732 net.cpp:105] Setting up pool2
I0423 16:16:02.212815 32732 net.cpp:112] Top shape: 100 50 4 4 (80000)
I0423 16:16:02.212822 32732 net.cpp:122] Memory required for data: 7674800
I0423 16:16:02.212828 32732 layer_factory.hpp:74] Creating layer ip1
I0423 16:16:02.212844 32732 net.cpp:76] Creating Layer ip1
I0423 16:16:02.212853 32732 net.cpp:372] ip1 <- pool2
I0423 16:16:02.212868 32732 net.cpp:334] ip1 -> ip1
I0423 16:16:02.212887 32732 net.cpp:105] Setting up ip1
I0423 16:16:02.228613 32732 net.cpp:112] Top shape: 100 500 1 1 (50000)
I0423 16:16:02.228634 32732 net.cpp:122] Memory required for data: 7874800
I0423 16:16:02.228663 32732 layer_factory.hpp:74] Creating layer relu1
I0423 16:16:02.228695 32732 net.cpp:76] Creating Layer relu1
I0423 16:16:02.228714 32732 net.cpp:372] relu1 <- ip1
I0423 16:16:02.228754 32732 net.cpp:323] relu1 -> ip1 (in-place)
I0423 16:16:02.228778 32732 net.cpp:105] Setting up relu1
I0423 16:16:02.228786 32732 net.cpp:112] Top shape: 100 500 1 1 (50000)
I0423 16:16:02.228791 32732 net.cpp:122] Memory required for data: 8074800
I0423 16:16:02.228797 32732 layer_factory.hpp:74] Creating layer ip2
I0423 16:16:02.228819 32732 net.cpp:76] Creating Layer ip2
I0423 16:16:02.228837 32732 net.cpp:372] ip2 <- ip1
I0423 16:16:02.228863 32732 net.cpp:334] ip2 -> ip2
I0423 16:16:02.228880 32732 net.cpp:105] Setting up ip2
I0423 16:16:02.229104 32732 net.cpp:112] Top shape: 100 10 1 1 (1000)
I0423 16:16:02.229112 32732 net.cpp:122] Memory required for data: 8078800
I0423 16:16:02.229132 32732 layer_factory.hpp:74] Creating layer ip2_ip2_0_split
I0423 16:16:02.229146 32732 net.cpp:76] Creating Layer ip2_ip2_0_split
I0423 16:16:02.229154 32732 net.cpp:372] ip2_ip2_0_split <- ip2
I0423 16:16:02.229187 32732 net.cpp:334] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0423 16:16:02.229202 32732 net.cpp:334] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0423 16:16:02.229214 32732 net.cpp:105] Setting up ip2_ip2_0_split
I0423 16:16:02.229224 32732 net.cpp:112] Top shape: 100 10 1 1 (1000)
I0423 16:16:02.229231 32732 net.cpp:112] Top shape: 100 10 1 1 (1000)
I0423 16:16:02.229236 32732 net.cpp:122] Memory required for data: 8086800
I0423 16:16:02.229241 32732 layer_factory.hpp:74] Creating layer accuracy
I0423 16:16:02.229257 32732 net.cpp:76] Creating Layer accuracy
I0423 16:16:02.229272 32732 net.cpp:372] accuracy <- ip2_ip2_0_split_0
I0423 16:16:02.229285 32732 net.cpp:372] accuracy <- label_mnist_1_split_0
I0423 16:16:02.229298 32732 net.cpp:334] accuracy -> accuracy
I0423 16:16:02.229312 32732 net.cpp:105] Setting up accuracy
I0423 16:16:02.229323 32732 net.cpp:112] Top shape: 1 1 1 1 (1)
I0423 16:16:02.229329 32732 net.cpp:122] Memory required for data: 8086804
I0423 16:16:02.229336 32732 layer_factory.hpp:74] Creating layer loss
I0423 16:16:02.229346 32732 net.cpp:76] Creating Layer loss
I0423 16:16:02.229354 32732 net.cpp:372] loss <- ip2_ip2_0_split_1
I0423 16:16:02.229365 32732 net.cpp:372] loss <- label_mnist_1_split_1
I0423 16:16:02.229377 32732 net.cpp:334] loss -> loss
I0423 16:16:02.229389 32732 net.cpp:105] Setting up loss
I0423 16:16:02.229399 32732 layer_factory.hpp:74] Creating layer loss
I0423 16:16:02.229423 32732 net.cpp:112] Top shape: 1 1 1 1 (1)
I0423 16:16:02.229430 32732 net.cpp:118] with loss weight 1
I0423 16:16:02.229441 32732 net.cpp:122] Memory required for data: 8086808
I0423 16:16:02.229447 32732 net.cpp:163] loss needs backward computation.
I0423 16:16:02.229455 32732 net.cpp:165] accuracy does not need backward computation.
I0423 16:16:02.229462 32732 net.cpp:163] ip2_ip2_0_split needs backward computation.
I0423 16:16:02.229468 32732 net.cpp:163] ip2 needs backward computation.
I0423 16:16:02.229475 32732 net.cpp:163] relu1 needs backward computation.
I0423 16:16:02.229480 32732 net.cpp:163] ip1 needs backward computation.
I0423 16:16:02.229485 32732 net.cpp:163] pool2 needs backward computation.
I0423 16:16:02.229490 32732 net.cpp:163] conv2 needs backward computation.
I0423 16:16:02.229496 32732 net.cpp:163] pool1 needs backward computation.
I0423 16:16:02.229502 32732 net.cpp:163] conv1 needs backward computation.
I0423 16:16:02.229507 32732 net.cpp:165] label_mnist_1_split does not need backward computation.
I0423 16:16:02.229514 32732 net.cpp:165] mnist does not need backward computation.
I0423 16:16:02.229519 32732 net.cpp:201] This network produces output accuracy
I0423 16:16:02.229527 32732 net.cpp:201] This network produces output loss
I0423 16:16:02.229547 32732 net.cpp:446] Collecting Learning Rate and Weight Decay.
I0423 16:16:02.229558 32732 net.cpp:213] Network initialization done.
I0423 16:16:02.229563 32732 net.cpp:214] Memory required for data: 8086808
I0423 16:16:02.229625 32732 solver.cpp:42] Solver scaffolding done.
I0423 16:16:02.229656 32732 solver.cpp:222] Solving LeNet
I0423 16:16:02.229662 32732 solver.cpp:223] Learning Rate Policy: inv
I0423 16:16:02.229670 32732 solver.cpp:266] Iteration 0, Testing net (#0)
I0423 16:16:02.229679 32732 net.cpp:636] Copying source layer mnist
I0423 16:16:02.229686 32732 net.cpp:636] Copying source layer conv1
I0423 16:16:02.229697 32732 net.cpp:636] Copying source layer pool1
I0423 16:16:02.229703 32732 net.cpp:636] Copying source layer conv2
I0423 16:16:02.229709 32732 net.cpp:636] Copying source layer pool2
I0423 16:16:02.229715 32732 net.cpp:636] Copying source layer ip1
I0423 16:16:02.229723 32732 net.cpp:636] Copying source layer relu1
I0423 16:16:02.229732 32732 net.cpp:636] Copying source layer ip2
I0423 16:16:02.229737 32732 net.cpp:636] Copying source layer loss
I0423 16:16:03.277840 372 data_layer.cpp:153] Restarting data prefetching from start.
I0423 16:16:03.293973 32732 solver.cpp:315] Test net output #0: accuracy = 0.1136
I0423 16:16:03.294020 32732 solver.cpp:315] Test net output #1: loss = 2.3022 (* 1 = 2.3022 loss)
I0423 16:16:03.295140 32732 solver.cpp:189] Iteration 0, loss = 2.30559
I0423 16:16:03.295174 32732 solver.cpp:204] Train net output #0: loss = 2.30559 (* 1 = 2.30559 loss)
I0423 16:16:03.295197 32732 solver.cpp:470] Iteration 0, lr = 0.01
I0423 16:16:07.800014 32732 solver.cpp:189] Iteration 5000, loss = 87.3365
I0423 16:16:07.800060 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:07.800068 32732 solver.cpp:470] Iteration 5000, lr = 0.00995124
I0423 16:16:12.106976 32732 solver.cpp:266] Iteration 10000, Testing net (#0)
I0423 16:16:12.107017 32732 net.cpp:636] Copying source layer mnist
I0423 16:16:12.107024 32732 net.cpp:636] Copying source layer conv1
I0423 16:16:12.107031 32732 net.cpp:636] Copying source layer pool1
I0423 16:16:12.107036 32732 net.cpp:636] Copying source layer conv2
I0423 16:16:12.107043 32732 net.cpp:636] Copying source layer pool2
I0423 16:16:12.107046 32732 net.cpp:636] Copying source layer ip1
I0423 16:16:12.107061 32732 net.cpp:636] Copying source layer relu1
I0423 16:16:12.107066 32732 net.cpp:636] Copying source layer ip2
I0423 16:16:12.107072 32732 net.cpp:636] Copying source layer loss
I0423 16:16:12.986168 10882 data_layer.cpp:153] Restarting data prefetching from start.
I0423 16:16:13.002249 32732 solver.cpp:315] Test net output #0: accuracy = 0.1009
I0423 16:16:13.002285 32732 solver.cpp:315] Test net output #1: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:13.002842 32732 solver.cpp:189] Iteration 10000, loss = 87.3365
I0423 16:16:13.002871 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:13.002882 32732 solver.cpp:470] Iteration 10000, lr = 0.00990296
I0423 16:16:17.338037 32732 solver.cpp:189] Iteration 15000, loss = 87.3365
I0423 16:16:17.338069 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:17.338079 32732 solver.cpp:470] Iteration 15000, lr = 0.00985515
I0423 16:16:21.653486 32732 solver.cpp:266] Iteration 20000, Testing net (#0)
I0423 16:16:21.653514 32732 net.cpp:636] Copying source layer mnist
I0423 16:16:21.653522 32732 net.cpp:636] Copying source layer conv1
I0423 16:16:21.653528 32732 net.cpp:636] Copying source layer pool1
I0423 16:16:21.653533 32732 net.cpp:636] Copying source layer conv2
I0423 16:16:21.653549 32732 net.cpp:636] Copying source layer pool2
I0423 16:16:21.653554 32732 net.cpp:636] Copying source layer ip1
I0423 16:16:21.653560 32732 net.cpp:636] Copying source layer relu1
I0423 16:16:21.653564 32732 net.cpp:636] Copying source layer ip2
I0423 16:16:21.653570 32732 net.cpp:636] Copying source layer loss
I0423 16:16:22.548477 21043 data_layer.cpp:153] Restarting data prefetching from start.
I0423 16:16:22.564523 32732 solver.cpp:315] Test net output #0: accuracy = 0.1009
I0423 16:16:22.564553 32732 solver.cpp:315] Test net output #1: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:22.565117 32732 solver.cpp:189] Iteration 20000, loss = 87.3365
I0423 16:16:22.565146 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:22.565157 32732 solver.cpp:470] Iteration 20000, lr = 0.00980781
I0423 16:16:26.912025 32732 solver.cpp:189] Iteration 25000, loss = 87.3365
I0423 16:16:26.912066 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:26.912077 32732 solver.cpp:470] Iteration 25000, lr = 0.00976092
I0423 16:16:31.390297 32732 solver.cpp:266] Iteration 30000, Testing net (#0)
I0423 16:16:31.390334 32732 net.cpp:636] Copying source layer mnist
I0423 16:16:31.390341 32732 net.cpp:636] Copying source layer conv1
I0423 16:16:31.390348 32732 net.cpp:636] Copying source layer pool1
I0423 16:16:31.390353 32732 net.cpp:636] Copying source layer conv2
I0423 16:16:31.390358 32732 net.cpp:636] Copying source layer pool2
I0423 16:16:31.390363 32732 net.cpp:636] Copying source layer ip1
I0423 16:16:31.390368 32732 net.cpp:636] Copying source layer relu1
I0423 16:16:31.390383 32732 net.cpp:636] Copying source layer ip2
I0423 16:16:31.390389 32732 net.cpp:636] Copying source layer loss
I0423 16:16:32.264202 31148 data_layer.cpp:153] Restarting data prefetching from start.
I0423 16:16:32.280170 32732 solver.cpp:315] Test net output #0: accuracy = 0.1009
I0423 16:16:32.280194 32732 solver.cpp:315] Test net output #1: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:32.280740 32732 solver.cpp:189] Iteration 30000, loss = 87.3365
I0423 16:16:32.280756 32732 solver.cpp:204] Train net output #0: loss = 87.3365 (* 1 = 87.3365 loss)
I0423 16:16:32.280766 32732 solver.cpp:470] Iteration 30000, lr = 0.00971448

Most helpful comment

solved by decreasing base_lr: 0.0005

All 2 comments

solved by decreasing base_lr: 0.0005

Accumulating gradients #1977 can be important to control for reducing the batch size. Increasing the momentum can be effective too. Please ask modeling questions on the caffe-users group.

Was this page helpful?
0 / 5 - 0 ratings