When I try make mattest, problem appeared as:
cd matlab; /usr/local/MATLAB/R2016b/bin/matlab -nodisplay -r caffe.run_tests(), exit()
< M A T L A B (R) >
Copyright 1984-2016 The MathWorks, Inc.
R2016b (9.1.0.441655) 64-bit (glnxa64)
September 7, 2016
To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.
Cleared 0 solvers and 0 stand-alone nets
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0320 17:58:08.510360 2344 net.cpp:51] Initializing net from parameters:
name: "testnet"
force_backward: true
state {
phase: TRAIN
level: 0
}
layer {
name: "data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
data_filler {
type: "gaussian"
std: 1
}
data_filler {
type: "constant"
}
num: 5
num: 5
channels: 2
channels: 1
height: 3
height: 1
width: 4
width: 1
}
}
layer {
name: "conv"
type: "Convolution"
bottom: "data"
top: "conv"
param {
decay_mult: 1
}
param {
decay_mult: 0
}
convolution_param {
num_output: 11
pad: 3
kernel_size: 2
weight_filler {
type: "gaussian"
std: 1
}
bias_filler {
type: "constant"
value: 2
}
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "conv"
top: "ip"
inner_product_param {
num_output: 13
weight_filler {
type: "gaussian"
std: 2.5
}
bias_filler {
type: "constant"
value: -3
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
I0320 17:58:08.510404 2344 layer_factory.hpp:77] Creating layer data
I0320 17:58:08.510412 2344 net.cpp:84] Creating Layer data
I0320 17:58:08.510417 2344 net.cpp:380] data -> data
I0320 17:58:08.510424 2344 net.cpp:380] data -> label
I0320 17:58:08.510435 2344 net.cpp:122] Setting up data
I0320 17:58:08.510442 2344 net.cpp:129] Top shape: 5 2 3 4 (120)
I0320 17:58:08.510447 2344 net.cpp:129] Top shape: 5 1 1 1 (5)
I0320 17:58:08.510448 2344 net.cpp:137] Memory required for data: 500
I0320 17:58:08.510450 2344 layer_factory.hpp:77] Creating layer conv
I0320 17:58:08.510457 2344 net.cpp:84] Creating Layer conv
I0320 17:58:08.510462 2344 net.cpp:406] conv <- data
I0320 17:58:08.510468 2344 net.cpp:380] conv -> conv
I0320 17:58:08.716840 2344 net.cpp:122] Setting up conv
I0320 17:58:08.716861 2344 net.cpp:129] Top shape: 5 11 8 9 (3960)
I0320 17:58:08.716864 2344 net.cpp:137] Memory required for data: 16340
I0320 17:58:08.716887 2344 layer_factory.hpp:77] Creating layer ip
I0320 17:58:08.716897 2344 net.cpp:84] Creating Layer ip
I0320 17:58:08.716902 2344 net.cpp:406] ip <- conv
I0320 17:58:08.716907 2344 net.cpp:380] ip -> ip
I0320 17:58:08.717002 2344 net.cpp:122] Setting up ip
I0320 17:58:08.717006 2344 net.cpp:129] Top shape: 5 13 (65)
I0320 17:58:08.717010 2344 net.cpp:137] Memory required for data: 16600
I0320 17:58:08.717013 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:08.717017 2344 net.cpp:84] Creating Layer loss
I0320 17:58:08.717034 2344 net.cpp:406] loss <- ip
I0320 17:58:08.717036 2344 net.cpp:406] loss <- label
I0320 17:58:08.717042 2344 net.cpp:380] loss -> loss
I0320 17:58:08.717051 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:08.717181 2344 net.cpp:122] Setting up loss
I0320 17:58:08.717187 2344 net.cpp:129] Top shape: (1)
I0320 17:58:08.717190 2344 net.cpp:132] with loss weight 1
I0320 17:58:08.717221 2344 net.cpp:137] Memory required for data: 16604
I0320 17:58:08.717226 2344 net.cpp:198] loss needs backward computation.
I0320 17:58:08.717231 2344 net.cpp:198] ip needs backward computation.
I0320 17:58:08.717233 2344 net.cpp:198] conv needs backward computation.
I0320 17:58:08.717236 2344 net.cpp:200] data does not need backward computation.
I0320 17:58:08.717239 2344 net.cpp:242] This network produces output loss
I0320 17:58:08.717243 2344 net.cpp:255] Network initialization done.
I0320 17:58:08.743211 2344 net.cpp:51] Initializing net from parameters:
name: "testnet"
force_backward: true
state {
phase: TRAIN
level: 0
}
layer {
name: "data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
data_filler {
type: "gaussian"
std: 1
}
data_filler {
type: "constant"
}
num: 5
num: 5
channels: 2
channels: 1
height: 3
height: 1
width: 4
width: 1
}
}
layer {
name: "conv"
type: "Convolution"
bottom: "data"
top: "conv"
param {
decay_mult: 1
}
param {
decay_mult: 0
}
convolution_param {
num_output: 11
pad: 3
kernel_size: 2
weight_filler {
type: "gaussian"
std: 1
}
bias_filler {
type: "constant"
value: 2
}
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "conv"
top: "ip"
inner_product_param {
num_output: 13
weight_filler {
type: "gaussian"
std: 2.5
}
bias_filler {
type: "constant"
value: -3
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
I0320 17:58:08.743255 2344 layer_factory.hpp:77] Creating layer data
I0320 17:58:08.743268 2344 net.cpp:84] Creating Layer data
I0320 17:58:08.743275 2344 net.cpp:380] data -> data
I0320 17:58:08.743283 2344 net.cpp:380] data -> label
I0320 17:58:08.743293 2344 net.cpp:122] Setting up data
I0320 17:58:08.743296 2344 net.cpp:129] Top shape: 5 2 3 4 (120)
I0320 17:58:08.743299 2344 net.cpp:129] Top shape: 5 1 1 1 (5)
I0320 17:58:08.743302 2344 net.cpp:137] Memory required for data: 500
I0320 17:58:08.743304 2344 layer_factory.hpp:77] Creating layer conv
I0320 17:58:08.743311 2344 net.cpp:84] Creating Layer conv
I0320 17:58:08.743314 2344 net.cpp:406] conv <- data
I0320 17:58:08.743319 2344 net.cpp:380] conv -> conv
I0320 17:58:08.744292 2344 net.cpp:122] Setting up conv
I0320 17:58:08.744302 2344 net.cpp:129] Top shape: 5 11 8 9 (3960)
I0320 17:58:08.744304 2344 net.cpp:137] Memory required for data: 16340
I0320 17:58:08.744313 2344 layer_factory.hpp:77] Creating layer ip
I0320 17:58:08.744319 2344 net.cpp:84] Creating Layer ip
I0320 17:58:08.744321 2344 net.cpp:406] ip <- conv
I0320 17:58:08.744328 2344 net.cpp:380] ip -> ip
I0320 17:58:08.744418 2344 net.cpp:122] Setting up ip
I0320 17:58:08.744423 2344 net.cpp:129] Top shape: 5 13 (65)
I0320 17:58:08.744426 2344 net.cpp:137] Memory required for data: 16600
I0320 17:58:08.744432 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:08.744437 2344 net.cpp:84] Creating Layer loss
I0320 17:58:08.744441 2344 net.cpp:406] loss <- ip
I0320 17:58:08.744444 2344 net.cpp:406] loss <- label
I0320 17:58:08.744449 2344 net.cpp:380] loss -> loss
I0320 17:58:08.744457 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:08.744580 2344 net.cpp:122] Setting up loss
I0320 17:58:08.744586 2344 net.cpp:129] Top shape: (1)
I0320 17:58:08.744590 2344 net.cpp:132] with loss weight 1
I0320 17:58:08.744596 2344 net.cpp:137] Memory required for data: 16604
I0320 17:58:08.744598 2344 net.cpp:198] loss needs backward computation.
I0320 17:58:08.744602 2344 net.cpp:198] ip needs backward computation.
I0320 17:58:08.744606 2344 net.cpp:198] conv needs backward computation.
I0320 17:58:08.744608 2344 net.cpp:200] data does not need backward computation.
I0320 17:58:08.744611 2344 net.cpp:242] This network produces output loss
I0320 17:58:08.744617 2344 net.cpp:255] Network initialization done.
Running caffe.test.test_net
..W0320 17:58:09.747437 2344 net.hpp:41] DEPRECATED: ForwardPrefilled() will be removed in a future version. Use Forward().
..I0320 17:58:09.836779 2344 net.cpp:51] Initializing net from parameters:
name: "testnet"
force_backward: true
state {
phase: TRAIN
level: 0
}
layer {
name: "data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
data_filler {
type: "gaussian"
std: 1
}
data_filler {
type: "constant"
}
num: 5
num: 5
channels: 2
channels: 1
height: 3
height: 1
width: 4
width: 1
}
}
layer {
name: "conv"
type: "Convolution"
bottom: "data"
top: "conv"
param {
decay_mult: 1
}
param {
decay_mult: 0
}
convolution_param {
num_output: 11
pad: 3
kernel_size: 2
weight_filler {
type: "gaussian"
std: 1
}
bias_filler {
type: "constant"
value: 2
}
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "conv"
top: "ip"
inner_product_param {
num_output: 13
weight_filler {
type: "gaussian"
std: 2.5
}
bias_filler {
type: "constant"
value: -3
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
I0320 17:58:09.836823 2344 layer_factory.hpp:77] Creating layer data
I0320 17:58:09.836833 2344 net.cpp:84] Creating Layer data
I0320 17:58:09.836838 2344 net.cpp:380] data -> data
I0320 17:58:09.836844 2344 net.cpp:380] data -> label
I0320 17:58:09.836853 2344 net.cpp:122] Setting up data
I0320 17:58:09.836858 2344 net.cpp:129] Top shape: 5 2 3 4 (120)
I0320 17:58:09.836877 2344 net.cpp:129] Top shape: 5 1 1 1 (5)
I0320 17:58:09.836880 2344 net.cpp:137] Memory required for data: 500
I0320 17:58:09.836884 2344 layer_factory.hpp:77] Creating layer conv
I0320 17:58:09.836901 2344 net.cpp:84] Creating Layer conv
I0320 17:58:09.836905 2344 net.cpp:406] conv <- data
I0320 17:58:09.836922 2344 net.cpp:380] conv -> conv
I0320 17:58:09.837237 2344 net.cpp:122] Setting up conv
I0320 17:58:09.837244 2344 net.cpp:129] Top shape: 5 11 8 9 (3960)
I0320 17:58:09.837249 2344 net.cpp:137] Memory required for data: 16340
I0320 17:58:09.837255 2344 layer_factory.hpp:77] Creating layer ip
I0320 17:58:09.837260 2344 net.cpp:84] Creating Layer ip
I0320 17:58:09.837265 2344 net.cpp:406] ip <- conv
I0320 17:58:09.837268 2344 net.cpp:380] ip -> ip
I0320 17:58:09.837352 2344 net.cpp:122] Setting up ip
I0320 17:58:09.837357 2344 net.cpp:129] Top shape: 5 13 (65)
I0320 17:58:09.837359 2344 net.cpp:137] Memory required for data: 16600
I0320 17:58:09.837364 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:09.837369 2344 net.cpp:84] Creating Layer loss
I0320 17:58:09.837373 2344 net.cpp:406] loss <- ip
I0320 17:58:09.837375 2344 net.cpp:406] loss <- label
I0320 17:58:09.837379 2344 net.cpp:380] loss -> loss
I0320 17:58:09.837385 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:09.837513 2344 net.cpp:122] Setting up loss
I0320 17:58:09.837520 2344 net.cpp:129] Top shape: (1)
I0320 17:58:09.837523 2344 net.cpp:132] with loss weight 1
I0320 17:58:09.837528 2344 net.cpp:137] Memory required for data: 16604
I0320 17:58:09.837532 2344 net.cpp:198] loss needs backward computation.
I0320 17:58:09.837535 2344 net.cpp:198] ip needs backward computation.
I0320 17:58:09.837538 2344 net.cpp:198] conv needs backward computation.
I0320 17:58:09.837541 2344 net.cpp:200] data does not need backward computation.
I0320 17:58:09.837545 2344 net.cpp:242] This network produces output loss
I0320 17:58:09.837549 2344 net.cpp:255] Network initialization done.
I0320 17:58:09.841357 2344 net.cpp:51] Initializing net from parameters:
name: "testnet"
force_backward: true
state {
phase: TRAIN
level: 0
}
layer {
name: "data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
data_filler {
type: "gaussian"
std: 1
}
data_filler {
type: "constant"
}
num: 5
num: 5
channels: 2
channels: 1
height: 3
height: 1
width: 4
width: 1
}
}
layer {
name: "conv"
type: "Convolution"
bottom: "data"
top: "conv"
param {
decay_mult: 1
}
param {
decay_mult: 0
}
convolution_param {
num_output: 11
pad: 3
kernel_size: 2
weight_filler {
type: "gaussian"
std: 1
}
bias_filler {
type: "constant"
value: 2
}
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "conv"
top: "ip"
inner_product_param {
num_output: 13
weight_filler {
type: "gaussian"
std: 2.5
}
bias_filler {
type: "constant"
value: -3
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
I0320 17:58:09.841394 2344 layer_factory.hpp:77] Creating layer data
I0320 17:58:09.841400 2344 net.cpp:84] Creating Layer data
I0320 17:58:09.841405 2344 net.cpp:380] data -> data
I0320 17:58:09.841413 2344 net.cpp:380] data -> label
I0320 17:58:09.841421 2344 net.cpp:122] Setting up data
I0320 17:58:09.841425 2344 net.cpp:129] Top shape: 5 2 3 4 (120)
I0320 17:58:09.841428 2344 net.cpp:129] Top shape: 5 1 1 1 (5)
I0320 17:58:09.841430 2344 net.cpp:137] Memory required for data: 500
I0320 17:58:09.841434 2344 layer_factory.hpp:77] Creating layer conv
I0320 17:58:09.841439 2344 net.cpp:84] Creating Layer conv
I0320 17:58:09.841441 2344 net.cpp:406] conv <- data
I0320 17:58:09.841444 2344 net.cpp:380] conv -> conv
I0320 17:58:09.842205 2344 net.cpp:122] Setting up conv
I0320 17:58:09.842214 2344 net.cpp:129] Top shape: 5 11 8 9 (3960)
I0320 17:58:09.842217 2344 net.cpp:137] Memory required for data: 16340
I0320 17:58:09.842223 2344 layer_factory.hpp:77] Creating layer ip
I0320 17:58:09.842231 2344 net.cpp:84] Creating Layer ip
I0320 17:58:09.842233 2344 net.cpp:406] ip <- conv
I0320 17:58:09.842237 2344 net.cpp:380] ip -> ip
I0320 17:58:09.842329 2344 net.cpp:122] Setting up ip
I0320 17:58:09.842334 2344 net.cpp:129] Top shape: 5 13 (65)
I0320 17:58:09.842337 2344 net.cpp:137] Memory required for data: 16600
I0320 17:58:09.842341 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:09.842346 2344 net.cpp:84] Creating Layer loss
I0320 17:58:09.842350 2344 net.cpp:406] loss <- ip
I0320 17:58:09.842352 2344 net.cpp:406] loss <- label
I0320 17:58:09.842355 2344 net.cpp:380] loss -> loss
I0320 17:58:09.842360 2344 layer_factory.hpp:77] Creating layer loss
I0320 17:58:09.842516 2344 net.cpp:122] Setting up loss
I0320 17:58:09.842523 2344 net.cpp:129] Top shape: (1)
I0320 17:58:09.842525 2344 net.cpp:132] with loss weight 1
I0320 17:58:09.842530 2344 net.cpp:137] Memory required for data: 16604
I0320 17:58:09.842533 2344 net.cpp:198] loss needs backward computation.
I0320 17:58:09.842536 2344 net.cpp:198] ip needs backward computation.
I0320 17:58:09.842538 2344 net.cpp:198] conv needs backward computation.
I0320 17:58:09.842541 2344 net.cpp:200] data does not need backward computation.
I0320 17:58:09.842543 2344 net.cpp:242] This network produces output loss
I0320 17:58:09.842547 2344 net.cpp:255] Network initialization done.
.
Done caffe.test.test_net
__________
Attempt to restart MATLAB? [y or n]>>'
after I enter y:
Segmentation violation detected at Tue Mar 20 17:58:09 2018
------------------------------------------------------------------------
Configuration:
Crash Decoding : Disabled - No sandbox or build area path
Crash Mode : continue (default)
Current Graphics Driver: Unknown software
Current Visual : None
Default Encoding : UTF-8
Deployed : false
GNU C Library : 2.23 stable
Host Name : han-B250M-D3V
MATLAB Architecture : glnxa64
MATLAB Entitlement ID: 6257193
MATLAB Root : /usr/local/MATLAB/R2016b
MATLAB Version : 9.1.0.441655 (R2016b)
OpenGL : software
Operating System : Linux 4.13.0-37-generic #42~16.04.1-Ubuntu SMP Wed Mar 7 16:03:28 UTC 2018 x86_64
Processor ID : x86 Family 6 Model 158 Stepping 9, GenuineIntel
Virtual Machine : Java 1.7.0_60-b19 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
Window System : No active display
Fault Count: 1
Abnormal termination:
Segmentation violation
Register State (from fault):
RAX = 006f0062006c006f RBX = 006f0062006c006e
RCX = 00007f21548b1460 RDX = 006f0062006c006e
RSP = 00007f220bdf3fd0 RBP = 00007f220bdf4020
RSI = 00007f220bdf4100 RDI = 00007f220bdf4020
R8 = 006f7f8354f714ce R9 = 0000000000000000
R10 = 000000000000007b R11 = 00007f222a6039c0
R12 = 00007f220bdf4100 R13 = 00007f2154899060
R14 = 00007f220bdf4270 R15 = 00007f220bdf4bf8
RIP = 00007f222a603a5b EFL = 0000000000010206
CS = 0033 FS = 0000 GS = 0000
Stack Trace (from fault):
[ 0] 0x00007f222a603a5b /usr/local/MATLAB/R2016b/bin/glnxa64/libboost_filesystem.so.1.56.0+00059995 _ZNK5boost10filesystem4path8filenameEv+00000155
[ 1] 0x00007f222a604b36 /usr/local/MATLAB/R2016b/bin/glnxa64/libboost_filesystem.so.1.56.0+00064310 _ZNK5boost10filesystem4path9extensionEv+00000022
[ 2] 0x00007f222a604c62 /usr/local/MATLAB/R2016b/bin/glnxa64/libboost_filesystem.so.1.56.0+00064610 _ZN5boost10filesystem4path17replace_extensionERKS1_+00000034
[ 3] 0x00007f219737aad8 /home/han/caffe/matlab/+caffe/private/caffe_.mexa64+00727768
[ 4] 0x00007f219737af30 /home/han/caffe/matlab/+caffe/private/caffe_.mexa64+00728880
[ 5] 0x00007f2197314acf /home/han/caffe/matlab/+caffe/private/caffe_.mexa64+00309967
[ 6] 0x00007f2197311e7f /home/han/caffe/matlab/+caffe/private/caffe_.mexa64+00298623 mexFunction+00000169
[ 7] 0x00007f221ce50caa /usr/local/MATLAB/R2016b/bin/glnxa64/libmex.so+00175274 mexRunMexFile+00000106
[ 8] 0x00007f221ce491a3 /usr/local/MATLAB/R2016b/bin/glnxa64/libmex.so+00143779
[ 9] 0x00007f221ce4a345 /usr/local/MATLAB/R2016b/bin/glnxa64/libmex.so+00148293
[ 10] 0x00007f221c1498a3 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_dispatcher.so+00768163 _ZN8Mfh_file16dispatch_fh_implEMS_FviPP11mxArray_tagiS2_EiS2_iS2_+00000947
[ 11] 0x00007f221c14a16e /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_dispatcher.so+00770414 _ZN8Mfh_file11dispatch_fhEiPP11mxArray_tagiS2_+00000030
[ 12] 0x00007f2218f84847 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+11675719
[ 13] 0x00007f2218f84aab /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+11676331
[ 14] 0x00007f2218fea411 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+12092433
[ 15] 0x00007f2218910930 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04909360
[ 16] 0x00007f2218912c3c /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04918332
[ 17] 0x00007f221890f410 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04903952
[ 18] 0x00007f221890a855 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04884565
[ 19] 0x00007f221890ab69 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04885353
[ 20] 0x00007f221890f20d /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04903437
[ 21] 0x00007f221890f2e2 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+04903650
[ 22] 0x00007f2218a06688 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+05916296
[ 23] 0x00007f2218a08b2f /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+05925679
[ 24] 0x00007f2218e8710e /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10637582
[ 25] 0x00007f2218e4eeab /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10407595
[ 26] 0x00007f2218e4efb3 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10407859
[ 27] 0x00007f2218e510d9 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10416345
[ 28] 0x00007f2218ec9bbe /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10910654
[ 29] 0x00007f2218eca072 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_lxe.so+10911858
[ 30] 0x00007f221b869941 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwm_interpreter.so+02443585 _Z51inEvalCmdWithLocalReturnInDesiredWSAndPublishEventsRKSbIDsSt11char_traitsIDsESaIDsEEPibbP15inWorkSpace_tag+00000065
[ 31] 0x00007f221cbaafc1 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00696257 _ZNK3iqm18InternalEvalPlugin24inEvalCmdWithLocalReturnERKSbIDsSt11char_traitsIDsESaIDsEEP15inWorkSpace_tag+00000097
[ 32] 0x00007f221cbac9db /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00702939 _ZN3iqm18InternalEvalPlugin7executeEP15inWorkSpace_tagRN5boost10shared_ptrIN14cmddistributor17IIPCompletedEventEEE+00000123
[ 33] 0x00007f221c4206cd /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00624333
[ 34] 0x00007f221cb9fa0a /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00649738
[ 35] 0x00007f221cb8beb2 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00569010
[ 36] 0x00007f221b3e705a /usr/local/MATLAB/R2016b/bin/glnxa64/libmwbridge.so+00159834
[ 37] 0x00007f221b3e7617 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwbridge.so+00161303
[ 38] 0x00007f221b3ee519 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwbridge.so+00189721
[ 39] 0x00007f221b3ee614 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwbridge.so+00189972
[ 40] 0x00007f221b3eefa9 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwbridge.so+00192425 _Z8mnParserv+00000617
[ 41] 0x00007f221c40b243 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00537155
[ 42] 0x00007f221c40d1ce /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00545230
[ 43] 0x00007f221c40d849 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00546889 _ZN5boost6detail17task_shared_stateINS_3_bi6bind_tIvPFvRKNS_8functionIFvvEEEENS2_5list1INS2_5valueIS6_EEEEEEvE6do_runEv+00000025
[ 44] 0x00007f221c40c236 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00541238
[ 45] 0x00007f221cbd3b49 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00863049
[ 46] 0x00007f221cbc051c /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00783644 _ZN5boost6detail8function21function_obj_invoker0ISt8functionIFNS_3anyEvEES4_E6invokeERNS1_15function_bufferE+00000028
[ 47] 0x00007f221cbc01fc /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00782844 _ZN3iqm18PackagedTaskPlugin7executeEP15inWorkSpace_tagRN5boost10shared_ptrIN14cmddistributor17IIPCompletedEventEEE+00000428
[ 48] 0x00007f221cb9fa0a /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00649738
[ 49] 0x00007f221cb8b690 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00566928
[ 50] 0x00007f221cb8e048 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwiqm.so+00577608
[ 51] 0x00007f222c7e040a /usr/local/MATLAB/R2016b/bin/glnxa64/libmwservices.so+02634762
[ 52] 0x00007f222c7e19af /usr/local/MATLAB/R2016b/bin/glnxa64/libmwservices.so+02640303
[ 53] 0x00007f222c7e20e6 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwservices.so+02642150 _Z25svWS_ProcessPendingEventsiib+00000102
[ 54] 0x00007f221c40b8c6 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00538822
[ 55] 0x00007f221c40bc42 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00539714
[ 56] 0x00007f221c3f98d6 /usr/local/MATLAB/R2016b/bin/glnxa64/libmwmcr.so+00465110
[ 57] 0x00007f222b3f96ba /lib/x86_64-linux-gnu/libpthread.so.0+00030394
[ 58] 0x00007f222b12f41d /lib/x86_64-linux-gnu/libc.so.6+01078301 clone+00000109
[ 59] 0x0000000000000000 <unknown-module>+00000000
This error was detected while a MEX-file was running. If the MEX-file
is not an official MathWorks function, please examine its source code
for errors. Please consult the External Interfaces Guide for information
on debugging MEX-files.
If this problem is reproducible, please submit a Service Request via:
http://www.mathworks.com/support/contact_us/
A technical support engineer might contact you with further information.
Thank you for your help.** This crash report has been saved to disk as /home/han/matlab_crash_dump.2301-1 **
Warning: The following error was caught while executing 'caffe.Solver' class
destructor:
Error using caffe_
Usage: caffe_('delete_solver', hSolver)
Error in caffe.Solver/delete (line 40)
caffe_('delete_solver', self.hSolver_self);
Error in caffe.Solver (line 17)
function self = Solver(varargin)
Error in caffe.test.test_solver (line 22)
self.solver = caffe.Solver(solver_file);
Error in caffe.run_tests (line 14)
run(caffe.test.test_solver) ...
> In caffe.Solver (line 17)
In caffe.test.test_solver (line 22)
In caffe.run_tests (line 14)
Caught "std::exception" Exception message is:
FatalException
Caught MathWorks::System::FatalException
[Please exit and restart MATLAB]>>
entry restart:
Undefined function or variable 'restart'.'
So does anyone know how to solve this problem? Thank you very much!
Operating system:ubuntu16.04
Compiler:make mattest
CUDA version (if applicable):8.0
CUDNN version (if applicable):5.1
BLAS:
Python or MATLAB version (for pycaffe and matcaffe respectively):MATLAB2016b
i met the same problem, would you please share your solutions if you solve it?
i met the same problem, would you please share your solutions if you solve it?
i met the same problem, would you please share your solutions if you solve it?
i met the same problem, would you please share your solutions if you solve it?
i met the same problem, would you please share your solutions if you solve it?
no but seriously though, matcaffe is completely borked. i tried to make it work on multiple versions of Matlab and prior commits of Caffe but could never make it work. your only solution is to switch to python
I met the same problem, would you please share your solutions if you solve it?
I tried to change version of GCC&g++ from 5.4 to 4.9, but it did not work. And my MATLAB version is also R2016b, I wonder is it caused by the version incompatibility? Bacause in the official website, there is a statement

I met the same problem, Operating system:ubuntu16.04, Compiler:make mattest, CUDA version (if applicable):8.0, CUDNN version (if applicable):5.1, there was the same problem as the first person, but I saw some blog achieve the test by Matlab R2016b, so I don't think it's directly related to the version. But I also don't know how to solve the problem.
I met the same problem.
That may be caused by the caffe version. This is my solutionit which might help others.
Download and Compile this version:
https://github.com/gy1874/caffe-rpnbf-cudnn5
Most helpful comment
i met the same problem, would you please share your solutions if you solve it?